The reducing inhibition of interfacial electron transfer and the resulting impact on the catalytic current of bilirubin oxidase (BOx) biocathodes is explored. Polymer‐coated multi‐wall carbon nanotubes (MWNTs) are modified with tethering and orientating agents to provide stable immobilization and efficient enzyme orientation. 1‐pyrenebutanoic acid, succinimidyl ester (PBSE) is used as a cross‐linker. A BOx natural substrate, bilirubin, and its artificial analogues are explored as orientating agents. It is established that bilirubin/PBSE‐modified BOx cathodes show approximately 0.4‐ and 3.2‐fold increases in the current density compared to cathodes modified separately with either PBSE or bilirubin, respectively. In subsequent experiments, the incorporation of PBSE and 2,5‐dimethyl‐1‐phenyl‐1H‐pyrrole‐3‐carbaldehyde, a functional analogue of bilirubin, into the MWNT matrix results in a further 2–2.5‐fold increase in the generated current density compared to the hybrid bilirubin/PBSE‐modified cathode, which is, therefore, 20 times higher than the unmodified BOx cathode. This significant enhancement in the performance of the cathode is attributed to the concomitant covalent attachment and proper orientation of BOx, which leads to improved enzyme/electrode interactions.
An NAD+-dependent enzymatic sensor with biofuel cell power source system for non-invasive monitoring of lactate in sweat was designed, developed, and tested. The sensor component, based on lactate dehydrogenase, showed linear current response with increasing lactate concentrations with limits of detection from 5 to 100 mM lactate and sensitivity of 0.2 µA.mM−1 in the presence of target analyte. In addition to the sensor patch a power source was also designed, developed and tested. The power source was a biofuel cell designed to oxidize glucose via glucose oxidase. The biofuel cell showed excellent performance, achieving over 80 mA at 0.4 V (16 mW) in a footprint of 3.5 × 3.5 × 0.7 cm. Furthermore, in order to couple the sensor to the power source, system electronic components were designed and fabricated. These consisted of an energy harvester (EH) and a micropotentiostat (MP). The EH was employed for harvesting power provided by the biofuel cell as well as up-converting the voltage to 3.0 V needed for the operation of the MP. The sensor was attached to MP for chronoamperometric detection of lactate. The Sensor Patch System was demonstrated under laboratory conditions.
This paper describes the development of a molecularly imprinted polymer (MIP) for theophylline that can be used for electrochemical sensing. Theophylline is a commonly used medication for the treatment of asthma. Due to its very narrow therapeutic index, it may have toxic and potentially fatal effects on the individual. Electrochemical detection of theophylline is difficult, because its molecular structure and standard reduction potential are very similar to that of caffeine. A new method for fabricating molecularly imprinted polymers is proposed utilizing methylene green. Poly(methylene green)(PMG), prepared by electropolymerization of an azine, methylene green, was imprinted for theophylline. PMG-based MIP-coated electrodes showed sensitivity towards the presence of the imprint molecule in solutions, as well as selectivity for the imprint over the interferent molecule caffeine. The PMG-based MIP-coated electrode described in this paper had an improved selectivity factor and reproducibility compared to other theophylline-imprinted MIP-coated electrodes in literature.
The effect of proper enzyme orientation at the electrode surface was explored for two multi-copper oxygen reducing enzymes: Bilirubin Oxidase (BOx) and Laccase (Lac). Simultaneous utilization of "tethering" agent (1-pyrenebutanoic acid, succinimidyl ester; PBSE), for stable enzyme immobilization, and syringaldazine (Syr), for enzyme orientation, of both Lac and BOx led to a notable enhancement of the electrode performance. For Lac cathodes tested in solution it was established that PBSE-Lac and PBSE-Syr-Lac modified cathodes demonstrated approximately 6 and 9 times increase in current density, respectively, compared to physically adsorbed and randomly oriented Lac cathodes. Further testing in solution utilizing BOx showed an even higher increase in achievable current densities, thus BOx was chosen for additional testing in air-breathing mode. In subsequent air-breathing experiments the incorporation of PBSE and Syr with BOx resulted in current densities of 0.65 ± 0.1 mA cm(-2); 2.5 times higher when compared to an unmodified BOx cathode. A fully tethered/oriented BOx cathode was combined with a NAD-dependent Glucose Dehydrogenase anode for the fabrication of a complete enzymatic membraneless fuel cell. A maximum power of 1.03 ± 0.06 mW cm(-2) was recorded for the complete fuel cell. The observed significant enhancement in the performance of "oriented" cathodes was a result of proper enzyme orientation, leading to facilitated enzyme/electrode interface interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.