Кафедра электронной инженерии, Факультет Электроники Национальный технический университет Украины "Киевский политехнический институт имени Игоря Сикорского" kpi.ua Киев, Украина Реферат-В статье рассматриваются основные методы машинного обучения с целью применения их к задаче классификации звуков легких. На основе базы звуков легких был получен ряд параметров сигналов. Задачей исследования было провести классификацию звуков при помощи пяти различных методов машинного обучения, а также определить из ряда параметров сигналов теиз них, которые дают в конечном счете наивысшую точность. Таким образом было найдено семь наиболее диагностически ценных параметров звуков дыхания и выявлено, что два метода машинного обученияметод опорных векторов и метод дерева принятия решенийпоказали наилучшие результаты. Таким образом, данная методика классификации может служить вспомогательным инструментом для врача-пульмонолога в постановке диагноза. Библ. 18, табл. 5. Ключевые словазвуки легких; машинное обучение; классификатор; метод опорных векторов; метод дерева принятия решений.
Abstract-Technique for separate estimation of fast and slow fluctuations in the heart rate signal is developed. The orthogonal dyadic wavelet transform is used to separate the slow heart rate changes in approximation part of decomposition and fast changes in detail parts. Experimental results using the recordings from persons practicing Chi meditation demonstrated the applicability of estimation heart rate fluctuations with the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.