Motor operated valves (MOV) are one of the most numerous classes of the nuclear power plant components. An important issue concerned with the MOV diagnostics is the lack of in-process (online) automated control for the MOV technical condition during full power operation of the NPP unit. In this regard, a vital task is that of the MOV diagnostics based on the signals of the current and voltage consumed during MOV ‘opening’ and ‘closing’ operations. The current and voltage signals represent time series measured at regular intervals. The current (and voltage) signals can be received online and contain all necessary information for the online diagnostics of the MOV status. Essentially, the approach allows active power signals to be calculated from the current and voltage signals, and characteristics (‘diagnostic signs’) to be extracted from particular portions (segments) of the active power signals using the values of which MOVs can be diagnosed. The paper deals with the problem of automating the segmentation of active power signals. To accomplish this, an algorithm has been developed based on using a convolutional neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.