Soil contamination is one of the major threats constraining proper functioning of the soil and thus provision of ecosystem services. Remedial actions typically only address the chemical soil quality by reducing total contaminant concentrations to acceptable levels guided by land use. However, emerging regulatory requirements on soil protection demand a holistic view on soil assessment in remediation projects thus accounting for a variety of soil functions. Such a view would require not only that the contamination concentrations are assessed and attended to, but also that other aspects are taking into account, thus addressing also physical and biological as well as other chemical soil quality indicators (SQIs). This study outlines how soil function assessment can be a part of a holistic sustainability appraisal of remediation alternatives using multi-criteria decision analysis (MCDA). The paper presents a method for practitioners for evaluating the effects of remediation alternatives on selected ecological soil functions using a suggested minimum data set (MDS) containing physical, biological and chemical SQIs. The measured SQIs are transformed into sub-scores by the use of scoring curves, which allows interpretation and the integration of soil quality data into the MCDA framework. The method is demonstrated at a study site (Marieberg, Sweden) and the results give an example of how soil analyses using the suggested MDS can be used for soil function assessment and subsequent input to the MCDA framework.
This paper presents a holistic approach to sustainable urban brownfield redevelopment where specific focus is put on the integration of a multitude of subsurface qualities in the early phases of the urban redevelopment process, i.e. in the initiative and plan phases. Achieving sustainability in brownfield redevelopment projects may be constrained by a failure of engagement between two key expert constituencies: urban planners/designers and subsurface engineers, leading to missed opportunities and unintended outcomes in the plan realisation phase. A more integrated approach delivers greater benefits. Three case studies in the Netherlands, Belgium and Sweden were used to test different sustainability assessment instruments in terms of the possibility for knowledge exchange between the subsurface and the surface sectors and in terms of cooperative learning among experts and stakeholders. Based on the lessons learned from the case studies, a generic decision process framework is suggested that supports holistic decision making. The suggested framework focuses on stakeholder involvement, communication, knowledge exchange and learning and provides an inventory of instruments that can support these processes.
The Circular Economy (CE) is expected to accelerate the use of resources with bio-based origin. Cities have an important role in such an economy, not only as main consumers but also because vegetation provides numerous ecosystem services essential for the well-being of urban dwellers. Urban lands are, however, heavily burdened with both past and present activities and ongoing urbanization. Retrofitting obsolete and potentially contaminated brownfields provides an opportunity to engage with bio-based land uses within the city. At the same time, plants are an important part of Gentle Remediation Options (GROs), a more sustainable alternative for managing contamination risks and restoring soil health. This paper (1) provides a tentative selection of Urban Greenspaces (UGSs) relevant for brownfields, and a compilation of ecosystem services provided by the selected UGSs, and (2) presents a framework covering the 14 selected bio-based land uses on brownfields, including GRO interventions over time. This framework provides three practical tools: the conceptualization of linkages between GROs and prospective UGS uses, a scatter diagram for the realization of 14 UGS opportunities on brownfields, and a decision matrix to analyze the requirements for UGS realization on brownfields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.