BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) are capable of shifting the microglia/macrophages phenotype from M1 to M2, contributing to BMSCs-induced brain repair. However, the regulatory mechanism of BMSCs on microglia/macrophages after ischemic stroke is unclear. Recent evidence suggests that mesencephalic astrocyte–derived neurotrophic factor (MANF) and platelet-derived growth factor-AA (PDGF-AA)/MANF signaling regulate M1/M2 macrophage polarization. AIM To investigate whether and how MANF or PDGF-AA/MANF signaling influences BMSCs-mediated M2 polarization. METHODS We identified the secretion of MANF by BMSCs and developed transgenic BMSCs using a targeting small interfering RNA for knockdown of MANF expression. Using a rat middle cerebral artery occlusion (MCAO) model transplanted by BMSCs and BMSCs–microglia Transwell coculture system, the effect of BMSCs-induced downregulation of MANF expression on the phenotype of microglia/macrophages was tested by Western blot, quantitative reverse transcription-polymerase chain reaction, and immunofluorescence. Additionally, microglia were transfected with mimics of miR-30a*, which influenced expression of X-box binding protein (XBP) 1, a key transcription factor that synergized with activating transcription factor 6 (ATF6) to govern MANF expression. We examined the levels of miR-30a*, ATF6, XBP1, and MANF after PDGF-AA treatment in the activated microglia. RESULTS Inhibition of MANF attenuated BMSCs-induced functional recovery and decreased M2 marker production, but increased M1 marker expression in vivo or in vitro . Furthermore, PDGF-AA treatment decreased miR-30a* expression, had no influence on the levels of ATF6, but enhanced expression of both XBP1 and MANF. CONCLUSION BMSCs-mediated MANF paracrine signaling, in particular the PDGF-AA/miR-30a*/XBP1/MANF pathway, synergistically mediates BMSCs-induced M2 polarization.
Glioma, like most cancers, possesses a unique bioenergetic state of aerobic glycolysis known as the Warburg effect, which is a dominant phenotype of most tumor cells. Glioma tumors exhibit high glycolytic metabolism with increased lactate production. Data derived from the gene expression profiling interactive analysis (GEPIA) database show that pyruvate dehydrogenase kinase 1 (PDK1) is significantly highly expressed in glioma tissues compared with corresponding normal tissues. PDK1 is a key enzyme in the transition of glycolysis to tricarboxylic acid cycle, via inactivating PDH and converting oxidative phosphorylation to Warburg effect, resulting in increment of lactate production. Silencing of PDK1 expression resulted in reduced lactate and ATP, accumulation of ROS, mitochondrial damage, decreased cell growth, and increased cell apoptosis. Aberrant expression of miR‐128 has been observed in many human malignancies. Mechanistically, we discover that overexpressed miR‐128‐3p disturbs the Warburg effect in glioma cells via reducing PDK1. Our experiments confirmed that the miR‐128‐3p/PDK1 axis played a pivotal role in cancer cell metabolism and growth. Collectively, these findings suggest that therapeutic strategies to modulate the Warburg effect, such as targeting of PDK1, might act as a potential therapeutic target for glioma treatment.
BackgroundTumor necrosis factor-stimulated gene-6 (TSG-6) is a multifunctional, anti-inflammatory, and protective protein, while the association between TSG-6 and acute ischemic stroke (AIS) remains unclear in humans. This study aims to investigate the potential diagnostic and short-term prognosis predictive values of TSG-6 in non-cardioembolic AIS.MethodsA total of 134 non-cardioembolic AIS patients within 24 h after AIS onset and 40 control subjects were recruited. Using an AIS dataset from the Gene Expression Omnibus database and setting the median expression level of TNFAIP6 as the cutoff point, data were divided into TNFAIP6-high and TNFAIP6-low expression groups. Differently expressed genes (DEGs) were extracted to perform gene enrichment analysis and protein–protein interaction (PPI) network. Baseline data were analyzed in a four-group comparison plotted as plasma TSG-6 concentration median and 25th/75th percentiles. The correlative factors of 3-month outcome were evaluated by logistic regression. TSG-6 concentrations and TSG-6-to-interleukin-8 ratios were compared in a block design. A receiver-operating characteristic curve was used to analyze the detective value of TSG-6 and 3-month prognosis predictive values of TSG-6 and TSG-6-to-interleukin-8 ratio.ResultsNon-cardioembolic AIS patients had significantly higher plasma TSG-6 levels than control subjects (P < 0.0001). The large-artery atherosclerosis group had significantly higher TSG-6 levels than the small-artery occlusion group (P = 0.0184). Seven hundred and eighty-two DEGs might be both AIS-related and TNFAIP6-correlated genes, and 17 targets were deemed AIS-related being closely relevant to TNFAIP6. Interleukin-8 was selected for further study. The National Institutes of Health Stroke Scale and the Acute Stroke Registry and Analysis of Lausanne scores at admission, lesion volume, neutrophil count, neutrophil-to-lymphocyte ratio, and interleukin-8 level were positively correlated with TSG-6 level, respectively (P < 0.0001). The unfavorable outcome group had meaningfully higher TSG-6 levels (P < 0.0001) and lower TSG-6-to-interleukin-8 ratios (P < 0.0001) than the favorable outcome group. After adjusting for confounding variables, elevated TSG-6 levels remained independently associated with 3-month poor prognosis of non-cardioembolic AIS (P = 0.017). In non-cardioembolic AIS, the cutoff values of TSG-6 concentration for detection and 3-month prognosis prediction and the TSG-6-to-interleukin-8 ratio for the 3-month prognosis prediction were 8.13 ng/ml [AUC, 0.774 (0.686–0.861); P < 0.0001], 10.21 ng/ml [AUC, 0.795 (0.702–0.887); P < 0.0001], and 1.505 [AUC, 0.873 (0.795–0.951); P < 0.0001].ConclusionsPlasma TSG-6 concentration was a novel indicator for non-cardioembolic AIS diagnosis and 3-month prognosis. Elevated TSG-6-to-interleukin-8 ratio might suggest a 3-month favorable outcome.
Background: Ischemic stroke (IS) is a common and serious neurological disease, and multiple pathways of cell apoptosis are implicated in its pathogenesis. Recently, extensive studies have indicated that pyroptosis is involved in various diseases, especially cerebrovascular diseases. However, the exact mechanism of interaction between pyroptosis and IS is scarcely understood. Thus, we aimed to investigate the impact of pyroptosis on IS-mediated systemic inflammation.Methods: First, the RNA regulation patterns mediated by 33 pyroptosis-related genes identified in 20 IS samples and 20 matched-control samples were systematically evaluated. Second, a series of bioinformatics algorithms were used to investigate the contribution of PRGs to IS pathogenesis. We determined three composition classifiers of PRGs which potentially distinguished healthy samples from IS samples according to the risk score using single-variable logistic regression, LASSO-Cox regression, and multivariable logistic regression analyses. Third, 20 IS patients were classified by unsupervised consistent cluster analysis in relation to pyroptosis. The association between pyroptosis and systemic inflammation characteristics was explored, which was inclusive of immune reaction gene sets, infiltrating immunocytes and human leukocyte antigen genes.Results: We identified that AIM2, SCAF11, and TNF can regulate immuno-inflammatory responses after strokes via the production of inflammatory factors and activation of the immune cells. Meanwhile, we identified distinct expression patterns mediated by pyroptosis and revealed their immune characteristics, differentially expressed genes, signaling pathways, and target drugs.Conclusion: Our findings lay a foundation for further research on pyroptosis and IS systemic inflammation, to improve IS prognosis and its responses to immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.