With rising global prevalence of diabetic retinopathy (DR), automated DR screening is needed for primary care settings. Two automated artificial intelligence (AI)-based DR screening algorithms have U.S. Food and Drug Administration (FDA) approval. Several others are under consideration while in clinical use in other countries, but their real-world performance has not been evaluated systematically. We compared the performance of seven automated AI-based DR screening algorithms (including one FDA-approved algorithm) against human graders when analyzing real-world retinal imaging data. RESEARCH DESIGN AND METHODSThis was a multicenter, noninterventional device validation study evaluating a total of 311,604 retinal images from 23,724 veterans who presented for teleretinal DR screening at the Veterans Affairs (VA) Puget Sound Health Care System (HCS) or Atlanta VA HCS from 2006 to 2018. Five companies provided seven algorithms, including one with FDA approval, that independently analyzed all scans, regardless of image quality. The sensitivity/specificity of each algorithm when classifying images as referable DR or not were compared with original VA teleretinal grades and a regraded arbitrated data set. Value per encounter was estimated. RESULTSAlthough high negative predictive values (82.72-93.69%) were observed, sensitivities varied widely (50.98-85.90%). Most algorithms performed no better than humans against the arbitrated data set, but two achieved higher sensitivities, and one yielded comparable sensitivity (80.47%, P 5 0.441) and specificity (81.28%, P 5 0.195). Notably, one had lower sensitivity (74.42%) for proliferative DR (P 5 9.77 Â 10 À4 ) than the VA teleretinal graders.
PurposePrevious studies have shown that vitreous stimulates degradation of the tumor suppressor protein p53 and that knockdown of phosphatidylinositol 5-phosphate 4-kinases (PI5P4Kα and -β) abrogates proliferation of p53-deficient cells. The purpose of this study was to determine whether vitreous stimulated expression of PI5P4Kα and -β and whether suppression of PI5P4Kα and -β would inhibit vitreous-induced cellular responses and experimental proliferative vitreoretinopathy (PVR).MethodsPI5P4Kα and -β encoded by PIP4K2A and 2B, respectively, in human ARPE-19 cells were knocked down by stably expressing short hairpin (sh)RNA directed at human PIP4K2A and -2B. In addition, we rescued expression of PI5P4Kα and -β by re-expressing mouse PIP4K2A and -2B in the PI5P4Kα and -β knocked-down ARPE-19 cells. Expression of PI5P4Kα and -β was determined by Western blot and immunofluorescence. The following cellular responses were monitored: cell proliferation, survival, migration, and contraction. Moreover, the cell potential of inducing PVR was examined in a rabbit model of PVR effected by intravitreal cell injection.ResultsWe found that vitreous enhanced expression of PI5P4Kα and -β in RPE cells and that knocking down PI5P4Kα and -β abrogated vitreous-stimulated cell proliferation, survival, migration, and contraction. Re-expression of mouse PIP4Kα and -β in the human PI5P4Kα and -β knocked-down cells recovered the loss of vitreous-induced cell contraction. Importantly, suppression of PI5P4Kα and -β abrogated the pathogenesis of PVR induced by intravitreal cell injection in rabbits. Moreover, we revealed that expression of PI5P4Kα and -β was abundant in epiretinal membranes from PVR grade C patients.ConclusionsThe findings from this study indicate that PI5P4Kα and -β could be novel therapeutic targets for the treatment of PVR.
Fungal endophthalmitis is an important cause of vision loss worldwide with a large body of literature describing the treatment of the disease. The evidence supporting the use of pars plana vitrectomy in the management of fungal endophthalmitis is largely comprised of case reports and case series and demonstrates the important role of vitrectomy surgery. Vitrectomy can improve the likelihood of establishing the diagnosis, enhance the treatment of infection by removing fungal elements in the vitreous, aid in the removal of other inoculated intraocular structures, and is an important tool in the management of vision-threatening post-infectious sequelae like retinal detachment and epiretinal membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.