Heat waves significantly increased mortality risk in China with apparent spatial heterogeneity, which was modified by some individual-level and community-level factors. Our findings suggest adaptation plans that target vulnerable populations in susceptible communities during heat wave events should be developed to reduce health risks.
Influenza is a major cause of morbidity and mortality worldwide, as well as in China. Knowledge of the spatial and temporal characteristics of influenza is important in evaluating and developing disease control programs. This study aims to describe an accurate spatiotemporal pattern of influenza at the prefecture level and explore the risk factors associated with influenza incidence risk in mainland China from 2005 to 2018. The incidence data of influenza were obtained from the Chinese Notifiable Infectious Disease Reporting System (CNIDRS). The Besag York Mollié (BYM) model was extended to include temporal and space-time interaction terms. The parameters for this extended Bayesian spatiotemporal model were estimated through integrated nested Laplace approximations (INLA) using the package R-INLA in R. A total of 702,226 influenza cases were reported in mainland China in CNIDRS from 2005–2018. The yearly reported incidence rate of influenza increased 15.6 times over the study period, from 3.51 in 2005 to 55.09 in 2008 per 100,000 populations. The temporal term in the spatiotemporal model showed that much of the increase occurred during the last 3 years of the study period. The risk factor analysis showed that the decreased number of influenza vaccines for sale, the new update of the influenza surveillance protocol, the increase in the rate of influenza A (H1N1)pdm09 among all processed specimens from influenza-like illness (ILI) patients, and the increase in the latitude and longitude of geographic location were associated with an increase in the influenza incidence risk. After the adjusting for fixed covariate effects and time random effects, the map of the spatial structured term shows that high-risk areas clustered in the central part of China and the lowest-risk areas in the east and west. Large space-time variations in influenza have been found since 2009. In conclusion, an increasing trend of influenza was observed from 2005 to 2018. The insufficient flu vaccine supplements, the newly emerging influenza A (H1N1)pdm09 and expansion of influenza surveillance efforts might be the major causes of the dramatic changes in outbreak and spatio-temporal epidemic patterns. Clusters of prefectures with high relative risks of influenza were identified in the central part of China. Future research with more risk factors at both national and local levels is necessary to explain the changing spatiotemporal patterns of influenza in China.
This study investigated the diarrhoea seasonality and its potential drivers as well as potential opportunities for future diarrhoea control and prevention in China. Data on weekly infectious diarrhoea cases in 31 provinces of China from 2005 to 2012, and data on demographic and geographic characteristics, as well as climatic factors, were complied. A cosinor function combined with a Poisson regression was used to calculate the three seasonal parameters of diarrhoea in different provinces. Regression tree analysis was used to identify the predictors of diarrhoea seasonality. Diarrhoea cases in China showed a bimodal distribution. Diarrhoea in children <5 years was more likely to peak in fall-winter seasons, while diarrhoea in persons > = 5 years peaked in summer. Latitude was significantly associated with spatial pattern of diarrhoea seasonality, with peak and trough times occurring earlier at high latitudes (northern areas), and later at low latitudes (southern areas). The annual amplitudes of diarrhoea in persons > = 5 years increased with latitude (r = 0.62, P<0.001). Latitude 27.8° N and 38.65° N were the latitudinal thresholds for diarrhoea seasonality in China. Regional-specific diarrhoea control and prevention strategies may be optimal for China. More attention should be paid to diarrhoea in children <5 years during fall-winter seasons.
BackgroundLittle is known about the spatiotemporal pattern of bacillary dysentery (BD) in China. This study assessed the geographic distribution and seasonality of BD in China over the past two decades.MethodsData on monthly BD cases in 31 provinces of China from January 1990 to December 2009 obtained from Chinese Center for Disease Control and Prevention, and data on demographic and geographic factors, as well as climatic factors, were compiled. The spatial distributions of BD in the four periods across different provinces were mapped, and heat maps were created to present the seasonality of BD by geography. A cosinor function combined with Poisson regression was used to quantify the seasonal parameters of BD, and a regression analysis was conducted to identify the potential drivers of morbidity and seasonality of BD.ResultsAlthough most regions of China have experienced considerable declines in BD morbidity over the past two decades, Beijing and Ningxia still had high BD morbidity in 2009. BD morbidity decreased more slowly in North-west China than other regions. BD in China mainly peaked from July to September, with heterogeneity in peak time between regions. Relative humidity was associated with BD morbidity and peak time, and latitude was the major predictor of BD amplitude.ConclusionsThe transmission of BD was heterogeneous in China. Improved sanitation and hygiene in North-west China, and better access to clean water and food in the big floating population in some metropolises could be the focus of future preventive interventions against BD. BD control efforts should put more emphasis on those dry areas in summer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.