As one of the most sophisticated attacks against power grids, coordinated cyber-physical attacks (CCPAs) damage the power grid's physical infrastructure and use a simultaneous cyber attack to mask its effect. This work proposes a novel approach to detect such attacks and identify the location of the line outages (due to the physical attack). The proposed approach consists of three parts. Firstly, moving target defense (MTD) is applied to expose the physical attack by actively perturbing transmission line reactance via distributed flexible AC transmission system (D-FACTS) devices. MTD invalidates the attackers' knowledge required to mask their physical attack. Secondly, convolution neural networks (CNNs) are applied to localize line outage position from the compromised measurements. Finally, model agnostic meta-learning (MAML) is used to accelerate the training speed of CNN following the topology reconfigurations (due to MTD) and reduce the data/retraining time requirements. Simulations are carried out using IEEE test systems. The experimental results demonstrate that the proposed approach can effectively localize line outages in stealthy CCPAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.