Caffeic acid (CA) is one of the major phenolic acids of coffee with multiple biological activities. Our previous study found that 500 mg/kg of chlorogenic acid (CGA) had the potential capacity of alleviating colonic inflammation. Moreover, CGA can be degraded into caffeic acid (CA) by the gut microbiota in the colon. Therefore, we hypothesize that CA can exert protective effects on colonic inflammation. To test the hypothesis, 251 mg/kg CA was supplemented to DSS-induced colitis mice. The results showed that CA treatment recovered DSS-induced disease activity index (DAI), colon length, and histopathology scores of colon tissue. Additionally, CA treatment significantly decreased pro-inflammatory cytokines and malondialdehyde (MDA) levels and increased the level of IL-10, total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in serum. qPCR results indicated that CA treatment dramatically downregulated mRNA expression of IL-1β, IL-6, and TNF-α as well as upregulated SOD1, GPX1, GPX2, CAT, and IL-10. In addition, CA supplementation significantly increased mRNA expression of Nrf-2, HO-1, and NQO1, which showed its antioxidant and anti-inflammatory capacities potentially by activating the Nrf-2/HO-1 pathway. Moreover, CA supplementation prevented gut barrier damage by enhancing Occludin gene expression. Furthermore, CA supplementation altered the gut microbiome composition by decreasing the relative abundance of Bacteroides and Turicibacter, and enhancing the relative abundance of Alistipes and Dubosiella. Meanwhile, CA supplementation increases the abundance of Dubosiella and Akkermansia. In conclusion, CA supplementation could effectively alleviate DSS-induced colitis by improving the defense against oxidative stress and inflammatory response.
Semen quality is one of the most important factors for the success of artificial insemination which has been widely applied in swine industry to take the advantages of the superior genetic background and higher fertility capability of boars. Hydroxytyrosol (HT), a polyphenol, has attracted broad interest due to its strong antioxidant, anti-inflammatory, and antibacterial activities. Sperm plasma membrane contains a large proportion of polyunsaturated fatty acids which is easily impaired by oxidative stress and thus to diminish semen quality. In current investigation, we aimed to explore the effects of dietary supplementation of HT on boar semen quality and the underlying mechanisms. Dietary supplementation of HT tended to increase sperm motility and semen volume/ejaculation. And the follow-up 2 months (without HT, just basal diet), the semen volume was significantly more while the abnormal sperm was less in HT group than that in control group. HT increased the “beneficial microbes” Bifidobacterium, Lactobacillus, Eubacterium, Intestinimonas, Coprococcus, and Butyricicoccus, however, decreased the relative abundance of “harmful microbes” Streptococcus, Oscillibacter, Clostridium_sensu_stricto, Escherichia, Phascolarctobacterium, and Barnesiella. Furthermore, HT increased plamsa steroid hormones such as testosterone and its derivatives, and antioxidant molecules while decreased bile acids and the derivatives. All the data suggest that HT improves gut microbiota to benefit plasma metabolites then to enhance spermatogenesis and semen quality. HT may be used as dietary additive to enhance boar semen quality in swine industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.