Background:The detection of solitary pulmonary nodules (SPNs) that may potentially develop into a malignant lesion is essential for early clinical interventions. However, grading classification based on computed tomography (CT) imaging results remains a significant challenge. The 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/CT imaging produces both false-positive and false-negative findings for the diagnosis of SPNs. In this study, we compared 18F-FDG and 3-deoxy-3-[18F]-fluorothymidine (18F-FLT) in lung cancer PET/CT imaging.Methods:The binding ratios of the two tracers to A549 lung cancer cells were calculated. The mouse lung cancer model was established (n = 12), and micro-PET/CT analysis using the two tracers was performed. Images using the two tracers were collected from 55 lung cancer patients with SPNs. The correlation among the cell-tracer binding ratios, standardized uptake values (SUVs), and Ki-67 proliferation marker expression were investigated.Results:The cell-tracer binding ratio for the A549 cells using the 18F-FDG was greater than the ratio using 18F-FLT (P < 0.05). The Ki-67 expression showed a significant positive correlation with the 18F-FLT binding ratio (r = 0.824, P < 0.01). The tumor-to-nontumor uptake ratio of 18F-FDG imaging in xenografts was higher than that of 18F-FLT imaging. The diagnostic sensitivity, specificity, and the accuracy of 18F-FDG for lung cancer were 89%, 67%, and 73%, respectively. Moreover, the diagnostic sensitivity, specificity, and the accuracy of 18F-FLT for lung cancer were 71%, 79%, and 76%, respectively. There was an obvious positive correlation between the lung cancer Ki-67 expression and the mean maximum SUV of 18F-FDG and 18F-FLT (r = 0.658, P < 0.05 and r = 0.724, P < 0.01, respectively).Conclusions:The 18F-FDG uptake ratio is higher than that of 18F-FLT in A549 cells at the cellular level. 18F-FLT imaging might be superior for the quantitative diagnosis of lung tumor tissue and could distinguish lung cancer nodules from other SPNs.
The aim of the present study was to determine the tumour specificity of the newly developed nucleoside metabolic positron emission tomography (PET) tracer, 3′-deoxy-3′-18F-fluorothymidine (18F-FLT). Using 18F-FLT PET imaging, DNA synthesis and cell proliferation were detected in Staphylococcus aureus (S. aureus) abscess and calcium sulphate models in Wister rabbits. A total of eight rabbits were implanted with S. aureus in the left tibia to induce an inflammatory process. Calcium sulphate + gentamicin was implanted in the right tibia to induce a physical stimulus without bacterial multiplication. After four weeks, the animals underwent 18F-FLT PET imaging, bacterial culturing and tissue pathology. The uptake of 18F-FLT was significantly higher in the abscess site compared with that in the granuloma, with maximum standardised uptake values of 5.76±0.25 and 1.15±0.32, respectively (P<0.01). This indicates that 18F-FLT is not a specific tumour tracer since active inflammation also results in the uptake of this compound. However, the tumour specificity of this tracer is higher compared with that of 18F-fluorodeoxyglucose. Therefore, 18F-FLT may be useful in the differential diagnosis of benign and malignant tumours.
To quantify myocardial glucose metabolism by (18)F-FDG PET/CT in patients that have coronary heart disease (CHD) according to traditional Chinese medicine classification. Ninety patients with CHD were enrolled and were categorized into three groups. All patients underwent PET-CT examination for (18)F-FDG uptake quantification. In group A, the radioactive signals were weak in multiple segments in 27 cases (90 %). One case had no visualization and two had normal visualization (mean SUV = 4 ± 0.6). In group B, the radioactive signals were in some local areas in eight cases (26.7 %). Twenty cases had an overall increase in signal density (SUV ≥ 8) (66.7 %). One case had no visualization, and one case had normal visualization (mean SUV 4 ± 0.6). In group C, 23 cases had no visual or a weak visual (SUV ≤ 2 ± 0.3) (76.7 %). Seven cases had segmental weak signals or signal defects. Different types of CHD demonstrate different metabolisms of myocardium glucose. It is necessary to dialectically classify CHD and apply differential treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.