Background Lung cancer is the leading cause of cancer‐related mortality worldwide. Studies have demonstrated that long noncoding RNA nicotinamide nucleotide transhydrogenase‐antisense RNA1 (NNT‐AS1) functioned as an oncogene in most malignancies, including non‐small cell lung cancer (NSCLC). This study aimed to investigate the underlying mechanisms of NNT‐AS1 in NSCLC progression. Methods The levels of NNT‐AS1, miR‐22‐3p and Yes‐associated protein (YAP1) were detected by qRT‐PCR in NSCLC tissues and cells. Kaplan‐Meier analysis was conducted to analyze the correlation between NNT‐AS1 expression and overall survival of NSCLC patients. Cell proliferation was evaluated by MTT assay. Cell migration and invasion were assessed using transwell assay. The protein levels of YAP1 and EMT‐related proteins were detected by western blot. The molecular mechanism was predicted by starBase2.0 and validated by dual‐luciferase reporter assay or RNA pull‐down assay. Xenograft analysis was carried out to analyze tumor growth in vivo. Results We found that the levels of NNT‐AS1 and YAP1 were enhanced, while miR‐22‐3p expression was decreased in NSCLC tissues and cells. High NNT‐AS1 expression was correlated with poor prognosis. NNT‐AS1 knockdown impeded proliferation, migration, invasion and EMT of NSCLC cells. NNT‐AS1 targeted miR‐22‐3p, and YAP1 was a target of miR‐22‐3p in NSCLC cells. Furthermore, NNT‐AS1 facilitated the progression of NSCLC by regulating miR‐22‐3p/YAP1 axis. NNT‐AS1 knockdown repressed tumor growth in vivo. Conclusion NNT‐AS1 facilitated proliferation, migration, invasion and EMT of NSCLC cells by sponging miR‐22‐3p and regulating YAP1 expression, which might provide a potential biomarker and therapeutic target for NSCLC.
Phosphonic acid natural products have potent inhibitory activities that have led to their application as antibiotics. Recent studies uncovered large collections of gene clusters encoding for unknown phosphonic acids across microbial genomes. However, our limited understanding of their metabolism presents a significant challenge toward accurately informing the discovery of new bioactive compounds directly from sequence information alone. Here, we use genome mining to identify a family of gene clusters encoding a conserved branch point unknown to bacterial phosphonic acid biosynthesis. The products of this gene cluster family are the phosphonoalamides, four new phosphonopeptides with L-phosphonoalanine as the common headgroup. Phosphonoalanine and phosphonoalamide A are antibacterials, with strongest inhibition observed against strains of Bacillus and Escherichia coli. Heterologous expression identified the gene required for transamination of phosphonopyruvate to phosphonoalanine, a new route for bacterial phosphonic acids encoded within genomes of diverse microbes. These results expand our knowledge of phosphonic acid diversity and pathways for their biosynthesis.
BackgroundWe performed a systematic review and meta-analysis of randomized controlled trials (RCTs) were to evaluate the effect and safety of local anesthetic infusion pump versus placebo for pain management following total knee arthroplasty (TKA).MethodsIn September 2016, a systematic computer-based search was conducted in the Pubmed, ISI Web of Knowledge, Embase, Cochrane Database of Systematic Reviews. Randomized controlled trials of patients prepared for primary TKA that compared local anesthetic infusion pump versus placebo for pain management following TKA were retrieved. The primary endpoint was the visual analogue scale (VAS) with rest or mobilization at 24, 48 and 72 h and morphine consumption at 24 and 48 h. The second outcomes are range of motion, length of hospital stay (LOS) and complications (infection, deep venous thrombosis (DVT), prolonged drainage and postoperative nausea and vomiting (PONV)).ResultsSeven clinical studies with 587 patients were included and for meta-analysis. Local anesthetic infusion pump are associated with less pain scores with rest or mobilization at 24 and 48 h with significant difference. However, the difference was likely no clinical significance. There were no significant difference between the LOS, the occurrence of DVT, prolonged drainage and PONV. However, local anesthetic infusion pump may be associated with more infection.ConclusionBased on the current meta-analysis, we found no evidence to support the routine use of local anesthetic infusion pump in the management of acute pain following TKA. More RCTs are still need to identify the pain control effects and optimal dose and speed of local anesthetic pain pump.
Phosphonate natural products have a history of successful application in medicine and biotechnology due to their ability to inhibit essential cellular pathways. This has inspired efforts to discover phosphonate natural products by prioritizing microbial strains whose genomes encode uncharacterized biosynthetic gene clusters (BGCs). Thus, success in genome mining is dependent on establishing the fundamental principles underlying the biosynthesis of inhibitory chemical moieties to facilitate accurate prediction of BGCs and the bioactivities of their products. Here, we report the complete biosynthetic pathway for the argolaphos phosphonopeptides. We uncovered the biochemical origins of aminomethylphosphonate (AMPn) and Nε-hydroxyarginine, two noncanonical amino acids integral to the antimicrobial function of argolaphos. Critical to this pathway were dehydrogenase and transaminase enzymes dedicated to the conversion of hydroxymethylphosphonate to AMPn. The interconnected activities of both enzymes provided a solution to overcome unfavorable energetics, empower cofactor regeneration, and mediate intermediate toxicity during these transformations. Sequential ligation of l-arginine and l-valine was afforded by two GCN5-related N-acetyltransferases in a tRNA-dependent manner. AglA was revealed to be an unusual heme-dependent monooxygenase that hydroxylated the Nε position of AMPn-Arg. As the first biochemically characterized member of the YqcI/YcgG protein family, AglA enlightens the potential functions of this elusive group, which remains biochemically distinct from the well-established P450 monooxygenases. The widespread distribution of AMPn and YqcI/YcgG genes among actinobacterial genomes suggests their involvement in diverse metabolic pathways and cellular functions. Our findings illuminate new paradigms in natural product biosynthesis and realize a significant trove of AmPn and Nε-hydroxyarginine natural products that await discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.