In this study, an autonomous type deterministic nonlinear mathematical model that explains the transmission dynamics of COVID-19 is proposed and analyzed by considering awareness campaign between humans and infectives of COVID-19 asymptomatic human immigrants. Unlike some of other previous model studies about this disease, we have taken into account the impact of awareness c between humans and infectives of COVID-19 asymptomatic human immigrants on COVID-19 transmission. The existence and uniqueness of model solutions are proved using the fundamental existence and uniqueness theorem. We also showed positivity and the invariant region of the model system with initial conditions in a certain meaningful set. The model exhibits two equilibria: disease (COVID-19) free and COVID-19 persistent equilibrium points and also the basic reproduction number, R 0 which is derived via the help of next generation approach. Our analytical analysis showed that disease-free equilibrium point is obtained only in the absence of asymptomatic COVID-19 human immigrants and disease (COVID-19) in the population. Moreover, local stability of disease-free equilibrium point is verified via the help of Jacobian and Hurwitz criteria, and the global stability is verified using Castillo-Chavez and Song approach. The disease-free equilibrium point is both locally and globally asymptotically stable whenever R 0 < 1 , so that disease dies out in the population. If R 0 > 1 , then disease-free equilibrium point is unstable while the endemic equilibrium point exists and stable, which implies the disease persist and reinvasion will occur within a population. Furthermore, sensitivity analysis of the basic reproduction number, R 0 with respect to model parameters, is computed to identify the most influential parameters in transmission as well as in the control of COVID-19. Finally, some numerical simulations are illustrated to verify the theoretical results of the model.
In this study, a nonlinear deterministic mathematical model that evaluates two important therapeutic measures of the COVID-19 pandemic: vaccination of susceptible and treatment for infected people who are in quarantine, is formulated and rigorously analyzed. Some of the fundamental properties of the model system including existence and uniqueness, positivity, and invariant region of solutions are proved under a certain meaningful set. The model exhibits two equilibrium points: disease-free and endemic equilibrium points under certain conditions. The basic reproduction number, R 0 , is derived via the next-generation matrix approach, and the dynamical behavior of the model is explored in detail. The analytical analysis reveals that the disease-free equilibrium solution is locally as well as globally asymptotically stable when the associated basic reproduction number is less than unity which indicates that COVID-19 dies out in the population. Also, the endemic equilibrium point is globally asymptotically stable whenever the associated basic reproduction number exceeds a unity which implies that COVID-19 establishes itself in the population. The sensitivity analysis of the basic reproduction number is computed to identify the most dominant parameters for the spreading out as well as control of infection and should be targeted by intervention strategies. Furthermore, we extended the considered model to optimal control problem system by introducing two time-dependent variables that represent the educational campaign to susceptibles and continuous treatment for quarantined individuals. Finally, some numerical results are illustrated to supplement the analytical results of the model using MATLAB ode45.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.