Neurological dysfunction commonly occurs after cardiac surgery with deep hypothermic circulatory arrest (DHCA). The mechanisms underlying DHCA-associated brain injury remain poorly understood. This study determined the changes in expression profiles of circular RNAs (circRNAs) in the hippocampus in rats that underwent DHCA, with an attempt to explore the potential role of circRNAs in the brain injury associated with DHCA. Adult male Sprague Dawley rats were subjected to cardiopulmonary bypass with DHCA. Brain injury was evaluated by neurological severity scores and histological as well as transmission electron microscope examinations. The expression profiles of circRNAs in the hippocampal tissues were screened by microarray. Quantitative real-time PCR (RT-qPCR) was used to validate the reliability of the microarray results. Bioinformatic algorithms were applied to construct a competing endogenous RNA (ceRNA) network, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to explore the potential biological roles of the circRNAs. Out of 14 145 circRNAs screened, 56 were differentially expressed in the hippocampus between the DHCA and sham-operated rats, including 30 upregulated and 26 downregulated circRNAs. The expression changes of six selected circRNAs (upregulated: rno_cir-cRNA_011190, rno_circRNA_012988, rno_circRNA_000544; downregulated: rno_circRNA_010393, rno_circRNA_012043, rno_circRNA_015149) were further confirmed by RT-qPCR. Bioinformatics analysis showed the enrichment of these confirmed circRNAs and their potential target mRNAs in several KEGG pathways including histidine metabolism, adipocytokine signaling, and cAMP signaling. By revealing the change expression profiles of circRNAs in the brain after DHCA, this study indicates possible involvements of these dysregulated circRNAs in brain injury and suggests a potential of targeting circRNAs for prevention and treatment of neurological dysfunction associated with DHCA.
Neurological dysfunction is a common complication of deep hypothermic circulatory arrest (DHCA). Endoplasmic reticulum (ER) stress plays a role in neuronal ischemia-reperfusion injury; however, it is unknown whether it contributes to DHCA-induced brain injury. Here, we aimed to investigate the role of ER stress in a rat DHCA model and cell hypothermic oxygen–glucose deprivation reoxygenation (OGD/R) model. ER stress and apoptosis-related protein expression were identified using Western blot analysis. Cell counting assay-8 and flow cytometry were used to determine cell viability and apoptosis, respectively. Brain injury was evaluated using modified neurological severity scores, whereas brain injury markers were detected through histological examinations and immunoassays. We observed significant ER stress molecule upregulation in the DHCA rat hippocampus and in hypothermic OGD/R PC-12 cells. In vivo and in vitro experiments showed that ER stress or activating transcription factor 6 (ATF6) inhibition alleviated rat DHCA-induced brain injury, increased cell viability, and decreased apoptosis accompanied by C/EBP homologous protein (CHOP). ER stress is involved in DHCA-induced brain injury, and the inhibition of the ATF6 branch of ER stress may ameliorate this injury by inhibiting CHOP-mediated apoptosis. This study establishes a scientific foundation for identifying new therapeutic targets for perioperative brain protection in clinical DHCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.