The 6.10-Mb genome sequence of the aerobic chitin-digesting gliding bacterium Flavobacterium johnsoniae (phylum Bacteroidetes) is presented. F. johnsoniae is a model organism for studies of bacteroidete gliding motility, gene regulation, and biochemistry. The mechanism of F. johnsoniae gliding is novel, and genome analysis confirms that it does not involve well-studied motility organelles, such as flagella or type IV pili. The motility machinery is composed of Gld proteins in the cell envelope that are thought to comprise the "motor" and SprB, which is thought to function as a cell surface adhesin that is propelled by the motor. Analysis of the genome identified genes related to sprB that may encode alternative adhesins used for movement over different surfaces. Comparative genome analysis revealed that some of the gld and spr genes are found in nongliding bacteroidetes and may encode components of a novel protein secretion system. F. johnsoniae digests proteins, and 125 predicted peptidases were identified. F. johnsoniae also digests numerous polysaccharides, and 138 glycoside hydrolases, 9 polysaccharide lyases, and 17 carbohydrate esterases were predicted. The unexpected ability of F. johnsoniae to digest hemicelluloses, such as xylans, mannans, and xyloglucans, was predicted based on the genome analysis and confirmed experimentally. Numerous predicted cell surface proteins related to Bacteroides thetaiotaomicron SusC and SusD, which are likely involved in binding of oligosaccharides and transport across the outer membrane, were also identified. Genes required for synthesis of the novel outer membrane flexirubin pigments were identified by a combination of genome analysis and genetic experiments. Genes predicted to encode components of a multienzyme nonribosomal peptide synthetase were identified, as were novel aspects of gene regulation. The availability of techniques for genetic manipulation allows rapid exploration of the features identified for the polysaccharide-digesting gliding bacteroidete F. johnsoniae.
Type I polyketide synthases (PKSs) are multifunctional enzymes that are organized into modules, each of which minimally contains a -ketoacyl synthase, an acyltransferase (AT), and an acyl carrier protein. Here we report that the leinamycin (LNM) biosynthetic gene cluster from Streptomyces atroolivaceus S-140 consists of two PKS genes, lnmI and lnmJ, that encode six PKS modules, none of which contain the cognate AT domain. The only AT activity identified within the lnm gene cluster is a discrete AT protein encoded by lnmG. Inactivation of lnmG, lnmI, or lnmJ in vivo abolished LNM biosynthesis. Biochemical characterization of LnmG in vitro showed that it efficiently and specifically loaded malonyl CoA to all six PKS modules. These findings unveiled a previously unknown PKS architecture that is characterized by a discrete, iteratively acting AT protein that loads the extender units in trans to ''AT-less'' multifunctional type I PKS proteins for polyketide biosynthesis. This PKS structure provides opportunities for PKS engineering as exemplified by overexpressing lnmG to improve LNM production.
In ClpXP and ClpAP complexes, ClpA and ClpX use the energy of ATP hydrolysis to unfold proteins and translocate them into the self-compartmentalized ClpP protease. ClpP requires the ATPases to degrade folded or unfolded substrates, but binding of acyldepsipeptide antibiotics (ADEPs) to ClpP bypasses this requirement with unfolded proteins. We present the crystal structure of Escherichia coli ClpP bound to ADEP1 and report the structural changes underlying ClpP activation. ADEP1 binds in the hydrophobic groove that serves as the primary docking site for ClpP ATPases. Binding of ADEP1 locks the N-terminal loops of ClpP in a β-hairpin conformation, generating a stable pore through which extended polypeptides can be threaded. This structure serves as a model for ClpP in the holo-enzyme ClpAP and ClpXP complexes and provides critical information to further develop this class of antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.