As a kind of soil-borne epidemic disease, bacterial wilt (BW) is one of the most serious diseases in tomatoes in southern China, which may significantly reduce food quality and the total amount of yield. Hyperspectral remote sensing can detect crop diseases in the early stages and offers potential for BW detection in tomatoes. Tomatoes in southern China are commonly cultivated in greenhouses or bird nets, limiting the application of remote sensing based on natural sunlight. To resolve these issues, we collected the spectrum of tomatoes firstly using the HS-VN1000B Portable Intelligent Spectrometer, which is equipped with a simulated solar light source. We then proposed a tomato BW detection model based on some optimal spectral features. Specifically, these optimal features, including vegetation indexes and principal components (PCs), were extracted by the sequential forward selection (SFS), the simulated annealing (SA), and the genetic algorithm (GA) and were finally fed into the support vector machine (SVM) classifier to detect diseased tomatoes. The results showed that the infected and healthy tomatoes exhibit different spectral characteristics for both leave and stem spectra, especially for near-infrared bands. In addition, the BW detecting model built by the combination of GA and SVM (GA-SVM) achieved the best performance with overall accuracies (OA) of 90.7% for leaves and 92.6% for stems. Compared with the results based on leaves, spectral features of stems provided better accuracy, indicating that the symptom of early infection of BW is more significant in tomato stems than in leaves. Further, the reliability of the GA-SVM tomato stem model was verified in our 2022 experiment with an OA of 88.6% and an F1 score of 0.80. Our study provides an effective means to detect BW disease of tomatoes in the early stages, which could help farmers manage their tomato production and effectively prevent pesticide abuse.
Total phosphorus (TP) is a significant indicator of water eutrophication. As a typical macrophytic lake, Lake Baiyangdian is of considerable importance to the North China Plain’s ecosystem. However, the lake’s eutrophication is severe, threatening the local ecological environment. The correlation between chlorophyll and TP provides a mechanism for TP prediction. In view of the absorption and reflection characteristics of the chlorophyll concentrations in inland water, we propose a method to predict TP concentration in a macrophytic lake with spectral characteristics dominated by chlorophyll. In this study, water spectra noise is removed by discrete wavelet transform (DWT), and chlorophyll-sensitive bands are selected by gray correlation analysis (GRA). To verify the effectiveness of the chlorophyll-sensitive bands for TP concentration prediction, three different machine learning (ML) algorithms were used to build prediction models, including partial least squares (PLS), random forest (RF) and adaptive boosting (AdaBoost). The results indicate that the PLS model performs well in terms of TP concentration prediction, with the least time consumption: the coefficient of determination (R2) and root mean square error (RMSE) are 0.821 and 0.028 mg/L in the training dataset, and 0.741 and 0.029 mg/L in the testing dataset, respectively. Compared with the empirical model, the method proposed herein considers the correlation between chlorophyll and TP concentration, as well as a higher accuracy. The results indicate that chlorophyll-sensitive bands are effective for predicting TP concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.