The current study observed the percentage of peripheral blood (PB) CD4+CD25+ regulatory T cells (Tregs) and the influence of CD4+CD25+ Tregs on the proliferation of naïve CD4 T cells in patients with hyperthyroidism. Furthermore, preliminary discussions are presented on the action mechanism of CD4+CD25+ Tregs on hyperthyroidism attacks. The present study identified that compared with the percentage of PB CD4+CD25+ Tregs in healthy control subjects, no significant changes were observed in the percentage of PB CD4+CD25+ Tregs in patients with hyperthyroidism (P>0.05). For patients with hyperthyroidism, CD4+CD25+ Tregs exhibited significantly reduced inhibition of the proliferation of naïve CD4 T cells and decreased secretion capacity on the cytokines of CD4 T cells, compared with those of healthy control subjects (P<0.05). In addition, it was demonstrated that thyroid function of patients with hyperthyroidism was significantly improved (P<0.05) subsequent to receiving medication. Compared with the percentage of PB CD4+CD25+ Tregs in patients with hyperthyroidism before treatment, no significant changes were observed in the percentage of PB CD4+CD25+ Tregs in hyperthyroidism patients following treatment (P>0.05). In the patients with hyperthyroidism, following treatment, CD4+CD25+ Tregs exhibited significantly increased inhibition of the proliferation of naïve CD4 T cells and increased secretion capacity of CD4 T cell cytokines, compared with those of the patients with hyperthyroidism prior to treatment (P<0.05). PB CD4+CD25+ Tregs function was decreased in patients with hyperthyroidism, and its non-proportional decrease may be closely associated with the occurrence and progression of hyperthyroidism.
Abstract. The aim of the present study was to conduct preliminary clinical screening and monitoring using a novel two-step derivatization process of urine in five categories of inherited metabolic disease (IMD). Urine samples (100 µl, containing 2.5 mmol/l creatinine) were taken from patients with IMDs. The collected urine was then treated using a two-step derivatization method (with oximation and silylation at room temperature), where urea and protein were removed. In the first step of the derivatization, α-ketoacids and α-aldehyde acids were prepared by oximation using novel oximation reagents. The second-step of the derivatization was that residues were silylated for analysis. Urine samples were examined using gas chromatography/mass spectrometry (GC/MS) and a retention time-locking technique. The simultaneous analysis and identification of >400 metabolites in >130 types of IMD was possible from the GC/MS results, where the IMDs included phenylketonuria, ornithine transcarbamylase deficiency, neonatal intrahepatic cholestasis caused by citrin deficiency, β-ureidopropionase deficiency and mitochondrial metabolic disorders. This method was demonstrated to have good repeatability. Considering α-ketoglutarate (α-KG) as an example, the relative standard deviations (RSDs) of the α-KG retention time and peak area were 0.8 and 3.9%, respectively, the blank spiked recovery rate was between 89.6 and 99.8%, and the RSD was ≤7.5% (n=5). The method facilitates the analysis of thermally non-stable and semi-volatile metabolites in urine, and greatly expands the range of materials that can be synchronously screened by GC/MS. Furthermore, it provides a comprehensive, effective and reliable biochemical analysis platform for the pathological research of IMDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.