New physics beyond the standard model of particles might cause a deviation from the inverse-square law of gravity. In some theories, it is parameterized by a power-law correction to the Newtonian gravitational force, which might originate from the simultaneous exchange of particles or modified and extended theories of gravity. Using the supplementary advances of the perihelia provided by INPOP10a (IMCCE, France) and EPM2011 (IAA RAS, Russia) ephemerides, we obtain preliminary limits on this correction. In our estimation, we take the Lense-Thirring effect due to the Sun's angular momentum into account. The parameters of the power-law correction and the uncertainty of the Sun's quadrupole moment are simultaneously estimated with the method of minimizing χ 2 . From INPOP10a, we find N = 0.605 for the exponent of the power-law correction. However, from EPM2011, we find that, although it yields N = 3.001, the estimated uncertainty in the Sun's quadrupole moment is much larger than the value given by current observations. This might be caused by the intrinsic nonlinearity in the power-law correction, which makes the estimation very sensitive to the supplementary advances of the perihelia.
Einstein's general relativity (GR) has become an inevitable part of deep space missions. According to the International Astronomical Union (IAU) Resolutions which are built in the framework of GR, several time scales and reference systems are recommended to be used in the solar system for control, navigation and scientific operation of a spacecraft. Under the IAU Resolutions, we derive the transformations between global and local velocities of an arbitrary orbiter. These transformations might be used in orbit determination with Doppler tracking and prediction of Doppler observables for the spacecraft. Taking the YingHuo-1 Mission as a technical example of future Chinese Mars explorations, we evaluate the significance and contributions of various components in the transformations. The largest contribution of the relativistic parts in the transformations can reach the level of ∼ 5 × 10 −5 m s −1. This suggests that, for such a spacecraft like we have assumed, if the accuracy of Doppler tracking is better than ∼ 5 × 10 −5 m s −1 then the relativistic parts of the transformations of velocities will be required.
ObjectivesThe aim of this study is to assess the influence of cardiopulmonary coupling (CPC) based on RCMSE on the prediction of complications and death in patients with acute type A aortic dissection (ATAAD).BackgroundThe cardiopulmonary system may be nonlinearly regulated, and its coupling relationship with postoperative risk stratification in ATAAD patients has not been studied.MethodsThis study was a single-center, prospective cohort study (ChiCTR1800018319). We enrolled 39 patients with ATAAD. The outcomes were in-hospital complications and all-cause readmission or death at 2 years.ResultsOf the 39 participants, 16 (41.0%) developed complications in the hospital, and 15 (38.5%) died or were readmitted to the hospital during the two-year follow-up. When CPC-RCMSE was used to predict in-hospital complications in ATAAD patients, the AUC was 0.853 (p < 0.001). When CPC-RCMSE was used to predict all-cause readmission or death at 2 years, the AUC was 0.731 (p < 0.05). After adjusting for age, sex, ventilator support (days), and special care time (days), CPC-RCMSE remained an independent predictor of in-hospital complications in patients with ATAAD [adjusted OR: 0.8 (95% CI, 0.68–0.94)].ConclusionCPC-RCMSE was an independent predictor of in-hospital complications and all-cause readmission or death in patients with ATAAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.