For the Kadomtsev–Petviashvili (KP) hierarchy constructed in terms of the famous Sato theory, a ‘‘k constraint’’ is proposed that leads the hierarchy to the nonlinear system involving a finite number of dynamical coordinates. The eigenvalue problem of the k-constrained system is naturally obtained from the linear system of the KP hierarchy, which takes the form of kth-order polynomial coupled with a first-order one, thus we are able to derive the correspondent Lax pair, recursion operator, bi-Hamiltonian structures, and conserved quantities. The constraints for the BKP hierarchy are also sketched.
We propose a new exactly solvable potential which consists of the modified Kratzer potential plus a new ring-shaped potential βctg 2 θ/r 2 . The exact solutions of the bound states of the Schrödinger equation for this potential are presented analytically by using the Nikiforov-Uvarov method, which is based on solving the second-order linear differential equation by reducing to a generalized equation of hypergeometric type. The wavefunctions of the radial and angular parts are taken on the form of the generalized Laguerre polynomials and the total energy of the system is different from the modified Kratzer potential because of the contribution of the angular part.
The n-fold Darboux transform (DT) is a 2×2 matrix for the Ablowitz-Kaup-NewellSegur (AKNS) system. In this paper, each element of this matrix is expressed by 2n + 1 ranks' determinants. Using these formulae, the determinant expressions of eigenfunctions generated by the n-fold DT are obtained. Furthermore, we give out the explicit forms of the n-soliton surface of the Nonlinear Schrodinger Equation (NLS) by the determinant of eigenfunctions.
In this paper, the partially party-time (PT ) symmetric nonlocal Davey-Stewartson (DS) equations with respect to x is called x-nonlocal DS equations, while a fully PT symmetric nonlocal DSII equation is called nonlocal DSII equation. Three kinds of solutions, namely, breather, rational, and semirational solutions for these nonlocal DS equations are derived by employing the bilinear method. For the x-nonlocal DS equations, the usual (2 + 1)-dimensional breathers are periodic in x direction and localized in y direction. Nonsingular rational solutions are lumps, and semirational solutions are composed of lumps, breathers, and periodic line waves. For the nonlocal DSII equation, line breathers are periodic in both x and y directions with parallels in profile, but localized in time. Nonsingular rational solutions are (2 + 1)-dimensional line rogue waves, which arise from a constant background and disappear into the same constant background, and this process only lasts for a short period of time. Semirational solutions describe interactions of line rogue waves and periodic line waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.