How and to what extent does BERT encode syntactically-sensitive hierarchical information or positionally-sensitive linear information? Recent work has shown that contextual representations like BERT perform well on tasks that require sensitivity to linguistic structure. We present here two studies which aim to provide a better understanding of the nature of BERT's representations. The first of these focuses on the identification of structurally-defined elements using diagnostic classifiers, while the second explores BERT's representation of subject-verb agreement and anaphor-antecedent dependencies through a quantitative assessment of self-attention vectors. In both cases, we find that BERT encodes positional information about word tokens well on its lower layers, but switches to a hierarchically-oriented encoding on higher layers. We conclude then that BERT's representations do indeed model linguistically relevant aspects of hierarchical structure, though they do not appear to show the sharp sensitivity to hierarchical structure that is found in human processing of reflexive anaphora. 1 * Equal contribution. 1 The code is available at https://github.com/ yongjie-lin/bert-opensesame.
We present CoSQL, a corpus for building cross-domain, general-purpose database (DB) querying dialogue systems. It consists of 30k+ turns plus 10k+ annotated SQL queries, obtained from a Wizard-of-Oz (WOZ) collection of 3k dialogues querying 200 complex DBs spanning 138 domains. Each dialogue simulates a real-world DB query scenario with a crowd worker as a user exploring the DB and a SQL expert retrieving answers with SQL, clarifying ambiguous questions, or otherwise informing of unanswerable questions. When user questions are answerable by SQL, the expert describes the SQL and execution results to the user, hence maintaining a natural interaction flow. CoSQL introduces new challenges compared to existing task-oriented dialogue datasets: (1) the dialogue states are grounded in SQL, a domain-independent executable representation, instead of domain-specific slotvalue pairs, and (2) because testing is done on unseen databases, success requires generalizing to new domains. CoSQL includes three tasks: SQL-grounded dialogue state tracking, response generation from query results, and user dialogue act prediction. We evaluate a set of strong baselines for each task and show that CoSQL presents significant challenges for future research. The dataset, baselines, and leaderboard will be released at https:// yale-lily.github.io/cosql.
We present SParC, a dataset for cross-domain Semantic Parsing in Context. It consists of 4,298 coherent question sequences (12k+ individual questions annotated with SQL queries), obtained from controlled user interactions with 200 complex databases over 138 domains. We provide an in-depth analysis of SParC and show that it introduces new challenges compared to existing datasets. SParC (1) demonstrates complex contextual dependencies, (2) has greater semantic diversity, and (3) requires generalization to new domains due to its cross-domain nature and the unseen databases at test time. We experiment with two state-of-the-art text-to-SQL models adapted to the context-dependent, crossdomain setup. The best model obtains an exact set match accuracy of 20.2% over all questions and less than 10% over all interaction sequences, indicating that the crossdomain setting and the contextual phenomena of the dataset present significant challenges for future research. The dataset, baselines, and leaderboard are released at https:// yale-lily.github.io/sparc. AS T2 ON T1.dormid = T2.dormid JOIN dorm_amenity AS T3 ON T2.amenid = T3.amenid WHERE T3.amenity_name = 'TV Lounge'What is the total capacity of these dorms? Q 2 : SELECT SUM (T1.student_capacity) FROM dorm AS T1 S 2 : JOIN has_amenity AS T2 ON T1.dormid = T2.dormid JOIN dorm_amenity AS T3 ON T2.amenid = T3.amenid WHERE T3.amenity_name = 'TV Lounge' How many students are living there? Q 3 : SELECT COUNT (*) FROM student AS T1 JOIN lives_in S 3 : AS T2 ON T1.stuid = T2.stuid WHERE T2.dormid IN ( SELECT T3.dormid FROM has_amenity AS T3 JOIN dorm_amenity AS T4 ON T3.amenid = T4.amenid WHERE T4.amenity_name = 'TV Lounge')
We present DART, an open domain structured DAta-Record-to-Text generation dataset with over 82k instances (DARTs). Data-to-text annotations can be a costly process, especially when dealing with tables which are the major source of structured data and contain nontrivial structures. To this end, we propose a procedure of extracting semantic triples from tables that encodes their structures by exploiting the semantic dependencies among table headers and the table title. Our dataset construction framework effectively merged heterogeneous sources from open domain semantic parsing and spoken dialogue systems by utilizing techniques including tree ontology annotation, question-answer pair to declarative sentence conversion and predicate unification, all with minimum post-editing. We present systematic evaluation on DART as well as new state-of-the-art results on WebNLG 2017 to show that DART (1) poses new challenges to existing data-to-text datasets and (2) facilitates out-of-domain generalization. Our data and code can be found at https://github. com/Yale-LILY/dart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.