In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.
The study is focused on the asymmetric secondary freeform lens (ASFL) design for creating a low glared light-emitting diode (LED) street light. The lens is mounted on a chip on board (COB) LED as the new LED street light module to perform a non-axial symmetric light intensity distribution. The experimental results show that the street light can work without inclining lamps and reach Chinese National Standards (CNS) and Illuminating Engineering Society of North America (IESNA) standards at the same time.
The silver nanowires (AgNWs) and silver nanoparticles (AgNPs) were synthesized. With near-field electrospinning (NFES) process, fibers and thin films with AgNPs and AgNWs were fabricated. In the NFES process, 10 k voltage was applied and the AgNPs and AgNWs fibers can be directly orderly collected without breaking and bending. Then, the characteristics of the fibers were analyzed by four-point probe and EDS. The conductive film was analyzed. When the thickness of films with AgNWs and AgNPs was 1.6 m, the sheet resistance of films was 0.032 Ω/sq which was superior to that of the commercial ITO. The transmissivity of films was analyzed. The transmissivity was inversely proportional to sheet resistance of the films. In the future, the fibers and films can be used as transparent conductive electrodes.
In this paper, we report the numerical calculations for a thermo-optical model and the temperature sensitivity of a fiber Bragg grating (FBG) sensor. The thermally-induced behaviors of a FBG sensor in the gas nitriding process were analyzed for temperatures ranging from 100–650 °C. The FBG consisted of properly chosen photosensitive fiber materials with an optimized thermo-optic coefficient. The experimental and optimized thermo-optic coefficient results were consistent in terms of temperature sensitivity. In these experiments, the temperature sensitivity of the FBG was found to be 11.9 pm/°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.