Exogenous crosslinking was proved to improve the fatigue resistance of anulus fibrosus and the stability of motion segment. The effect of crosslinking on the recovery of stab-injured discs, however, was less studied. The purpose of this study is to find if the exogenous crosslinking can increase the mechanical function of injured discs. Fresh healthy porcine discs (T2/T9) from 6-month-old swine were obtained immediately following death. Anular puncture using 16 and 18 G spinal needle were used to create medium and large disc stab injury models. Three treatments were designed for each injury model. The first one is the injured discs without treatment. The second one is the injured discs soaked with phosphate buffered solution for 2 days. The third one is the injured discs soaked with 0.33% genipin solution for 2 days. The disc integrity was evaluated using quantitative discomanometry (QD) apparatus. Four QD parameters, that is, the leakage pressure and volume, and the saturate pressure and volume, were analyzed to find the efficacy of treatment. We found that soaking of genipin solution recovered the disc leakage pressure from 1.3 to 1.8 MPa in 16 G-injury-model and from 2.3 to 3.2 MPa in 18 G-injury-model, and recovered the saturate pressure from 1.6 to 2.0 MPa in 16 G-injury-model and from 2.7 to 3.7 MPa in 18 G-injury-model. The improvement of disc integrity by soaking with genipin solution indicate that the exogenous crosslinking may help the biomechanical performance of an injured disc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.