Glioblastoma multiforme (GBM), the most prevalent and malignant form of a primary brain tumour, is resistant to chemotherapy. In this study, we concurrently loaded three chemotherapeutic agents [bis-chloroethylnitrosourea, irinotecan, and cisplatin; BIC] into 50:50 poly[(d,l)-lactide-co-glycolide] (PLGA) nanofibres and an antiangiogenic agent (combretastatin) into 75:25 PLGA nanofibres [BIC and combretastatin (BICC)/PLGA]. The BICC/PLGA nanofibrous membranes were surgically implanted onto the brain surfaces of healthy rats for conducting pharmacodynamic studies and onto C6 glioma-bearing rats for estimating the therapeutic efficacy.The chemotherapeutic agents were rapidly released from the 50:50 PLGA nanofibres after implantation, followed by the release of combretastatin (approximately 2 weeks later) from the 75:25 PLGA nanofibres. All drug concentrations remained higher in brain tissues than in the blood for more than 8 weeks. The experimental results, including attenuated malignancy, retarded tumour growth, and prolonged survival in tumour-bearing rats, demonstrated the efficacy of the BICC/PLGA nanofibrous membranes. Furthermore, the efficacy of BIC/PLGA and BICC/PLGA nanofibrous membranes was compared. The BICC/PLGA nanofibrous membranes more efficiently retarded the tumour growth and attenuated the malignancy of C6 glioma-bearing rats. Moreover, the addition of combretastatin did not significantly change the drug release behaviour of the BIC/PLGA nanofibrous membranes. The present advanced and novel interstitial chemotherapy and targeted treatment provide a potential strategy and regimen for treating GBM.
TaO has been an appealing contender for the resistance switching random access memory (ReRAM). The resistance switching (RS) in this material is induced by the repeated formation and rupture of the conducting filaments (CFs) in the oxide layer, which are accompanied by the almost inevitable randomness of the switching parameters. In this work, a 1 to 2 nm-thick Ti layer was deposited on the 10 nm-thick TaO RS layer, which greatly improved the RS performances, including the much-improved switching uniformity. The Ti metal layer was naturally oxidized to TiO (x < 2) and played the role of a series resistor, whose resistance value was comparable to the on-state resistance of the TaO RS layer. The series resistor TiO efficiently suppressed the adverse effects of the voltage (or current) overshooting at the moment of switching by the appropriate voltage partake effect, which increased the controllability of the CF formation and rupture. The switching cycle endurance was increased by two orders of magnitude even during the severe current-voltage sweep tests compared with the samples without the thin TiO layer. The Ti deposition did not induce any significant overhead to the fabrication process, making the process highly promising for the mass production of a reliable ReRAM.
The incidence of postoperative central nervous system infection (PCNSI) is higher than 5%–7%. Successful management of PCNSI requires a combined therapy of surgical debridement and long-term antibiotic treatment. In this study, Duraform soaked in a prepared bacterial solution was placed on the brain surface of rats to induce PCNSI. Virgin poly[(d,l)-lactide-co-glycolide] (PLGA) nanofibrous membranes (vehicle-control group) and vancomycin-eluting PLGA membranes (vancomycin-nanofibres group) were implanted. The wound conditions were observed and serial brain MRI and pathology examinations were performed regularly. PCNSI was consistently induced in a single, simple step. In the vehicle-control group, most rats died within 1 week, and the survival rate was low (odds ratio = 0.0357, 95% confidence interval = 0.0057–0.2254). The wounds and affected cerebral tissues necrosed with purulence and increased in mass from the resulting PCNSI volumes. Initially, the mean PCNSI volumes showed no significant difference between the two groups. The PCNSI volume in the rats in the vancomycin-nanofibres group significantly decreased (P < 0.01), and the wound appearance was excellent. Pathologic examinations revealed that the necrosis and leukocyte infiltration area decreased considerably. The experimental results suggest that vancomycin-eluting PLGA nanofibres are favourable candidates for treating PCNSI after surgical debridement.
Glioblastoma is the most frequent and devastating primary brain tumor. Surgery followed by radiotherapy with concomitant and adjuvant chemotherapy is the standard of care for patients with glioblastoma. Chemotherapy is ineffective, because of the low therapeutic levels of pharmaceuticals in tumor tissues and the well-known tumor-cell resistance to chemotherapy. Therefore, we developed bilayered poly( d , l )-lactide- co -glycolide nanofibrous membranes that enabled the sequential and sustained release of chemotherapeutic and antiangiogenic agents by employing an electrospinning technique. The release characteristics of embedded drugs were determined by employing an in vitro elution technique and high-performance liquid chromatography. The experimental results showed that the fabricated nanofibers showed a sequential drug-eluting behavior, with the release of high drug levels of chemotherapeutic carmustine, irinotecan, and cisplatin from day 3, followed by the release of high concentrations of the antiangiogenic combretastatin from day 21. Biodegradable multidrug-eluting nanofibrous membranes were then dispersed into the cerebral cavity of rats by craniectomy, and the in vivo release characteristics of the pharmaceuticals from the membranes were investigated. The results suggested that the nanofibrous membranes released high concentrations of pharmaceuticals for more than 8 weeks in the cerebral parenchyma of rats. The result of histological analysis demonstrated developmental atrophy of brains with no inflammation. Biodegradable nanofibrous membranes can be manufactured for long-term sequential transport of different chemotherapeutic and anti-angiogenic agents in the brain, which can potentially improve the treatment of glioblastoma multiforme and prevent toxic effects due to systemic administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.