Periventricular heterotopia (PH) is a disorder characterized by neuronal nodules, ectopically positioned along the lateral ventricles of the cerebral cortex. Mutations in either of two human genes, Filamin A (FLNA) or ADP-ribosylation factor guanine exchange factor 2 (ARFGEF2), cause PH (Fox et al. in 'Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia'. Neuron, 21, 1315-1325, 1998; Sheen et al. in 'Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex'. Nat. Genet., 36, 69-76, 2004). Recent studies have shown that mutations in mitogen-activated protein kinase kinase kinase-4 (Mekk4), an indirect interactor with FlnA, also lead to periventricular nodule formation in mice (Sarkisian et al. in 'MEKK4 signaling regulates filamin expression and neuronal migration'. Neuron, 52, 789-801, 2006). Here we show that neurons in post-mortem human PH brains migrated appropriately into the cortex, that periventricular nodules were primarily composed of later-born neurons, and that the neuroependyma was disrupted in all PH cases. As studied in the mouse, loss of FlnA or Big2 function in neural precursors impaired neuronal migration from the germinal zone, disrupted cell adhesion and compromised neuroepithelial integrity. Finally, the hydrocephalus with hop gait (hyh) mouse, which harbors a mutation in Napa [encoding N-ethylmaleimide-sensitive factor attachment protein alpha (alpha-SNAP)], also develops a progressive denudation of the neuroepithelium, leading to periventricular nodule formation. Previous studies have shown that Arfgef2 and Napa direct vesicle trafficking and fusion, whereas FlnA associates dynamically with the Golgi membranes during budding and trafficking of transport vesicles. Our current findings suggest that PH formation arises from a final common pathway involving disruption of vesicle trafficking, leading to impaired cell adhesion and loss of neuroependymal integrity.
Background: Missense mutations in AHI1 result in the neurodevelopmental ciliopathy called Joubert syndrome. Results: Mutations in AHI1 decrease cilia formation, alter its localization and stability, and change its binding to HAP1 and NPHP1. Conclusion: Mutations in AHI1 affect ciliogenesis, AHI1 protein localization, and AHI1-protein interactions. Significance: This study begins to describe how missense mutations in AHI1 can cause Joubert syndrome.
Laborious molecular genotyping and variegated gene expression are two widely encountered issues for transgenic mouse studies. To facilitate genotyping in the FVB/N albino background and to reduce variegated expression, we successfully generated double-tagged transgenic mice for direct visual genotyping with the coat color phenotype derived from tyrosinase cDNA driven by the tyrosinase promoter and with simultaneous high enhanced green fluorescent protein (EGFP) expression driven by the promoter of RNA polymerase II large subunit gene. Incorporation of insulator into a transgene construct achieved high efficiency of transgene expression in more than 90% of the founders. EGFP was detected as early as the one-cell fertilized egg and lasted for the whole embryo development, as well as in all of the adult tissues examined. The coat color-tagged green mice offer opportunities in applications such as tissue transplantation, lineage tracing, chimera biology, RNA interference, and other transgenic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.