Poor oral hygiene may lead to overgrowth of pathogenic oral bacteria, which may induce chronic inflammation to promote the oncogenesis of oral squamous cell carcinoma (OSCC). This study investigated the association between oral bacterial profile and OSCC risk in a case-control study of 138 OSCC cases and 151 controls (88 cases and 90 controls for the discovery group and 50 cases and 61 controls for the validation group). Oral bacterial profiles were characterized by targeted sequencing of the 16S rRNA gene. Three species of periodontopathogenic bacteria, Prevotella tannerae, Fusobacterium nucleatum, and Prevotella intermedia, were associated with an increased OSCC risk. This association was modified by the genetic polymorphisms of TLR2 and TLR4. Use of alcohol, betel quids and cigarettes and poor oral hygiene were associated with a higher percentage of oral periodontopathogenic bacteria. The association between alcohol and periodontopathogenic bacteria was modified by the genetic polymorphism of ALDH2, with a stronger positive association observed among the ALDH2-deficient individuals. The percentage of periodontopathogenic bacteria was positively correlated with the level of salivary IL1β, an inflammatory cytokine. Overall, our results showed a positive association between periodontopathogenic bacteria and OSCC risk and this relationship may be influenced by lifestyle and genetic factors. Our results provided further biological support for the established association between poor oral hygiene and OSCC risk. This suggested that improving oral hygiene may reduce OSCC risk and should be part of a public health campaign to prevent the occurrence of OSCC.
Though the mortality rate in patients with bacteremic BTI is substantial, survival is better than in those with bacteremia from other sources. The main prognostic factors identified in this study may help clinicians recognize patients at high risk for early mortality so that they can give prompt, appropriate treatment.
A wettability gradient to transport a droplet across superhydrophobic to hydrophilic surfaces is fabricated on combining a structure gradient and a self-assembled-monolayer (SAM) gradient. The combination of these two gradients is realized with a simple but versatile SAM technique, in which the textured silicon wafer strip is placed vertically in a bottle that contains a decyltrichlorosilane solution to form concurrently a saturated SAM below the liquid surface and a wettability gradient above. The platform fabricated in this way has a water-contact angle from 151.2 degrees to 39.7 degrees; the self-transport distance is hence increased significantly to about 9 mm. A theoretical model that approximates the shape of a moving drop to a spheroidal cap is developed to predict the self-transport behavior. Satisfactory agreement is shown for most regions except where the hysteresis effect is unmeasurable and an unsymmetrical deformation occurs. A double-directional gradient surface to alter the direction of movement of a droplet is also realized. The platforms we developed serve not only to transport a fluid over a long distance but also for a broad spectrum of biomedical applications such as protein adsorption, cell adhesion and DNA-based biosensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.