Using the Z-scan technique, we find that migration of chloroaluminum phthalocyanine in liquid ethanol can be induced by the absorption of a 19 ps laser pulse with energy exceeding a threshold but not by that of a 2.8 ns pulse depositing more energy at the solute molecules. Considering each solute molecule as an oscillator confined within a potential well, we explain, in accordance with the five-energy-band model, that solute molecules excited by a 19 ps pulse retain more translational excess energy to overcome the potential well barrier compared with those excited by a 2.8 ns pulse of equal energy. Therefore, they are more likely to migrate out of the laser beam center, weakening the solution's absorption that we detect in the Z-scan measurements. Furthermore, we theoretically infer that the 19 ps pulse-induced solute migration tends to be nonquasistatic and experimentally verify that it cannot be attributed to the Soret effect, a quasistatic process.
The thermal lensing effect in transparent (linear and nonlinear) molecular liquids can be modulated by disrupting continuously output 82 MHz 28 fs laser pulses at 800 nm to form trains of various widths ( t ) with respect to the thermal diffusivity time th ($ 2 ms). We present nonlinear refraction results for CHBr 3 (bromoform) obtained by the Z -scan technique. The results show that the thermal lensing effect increases with t when t is less than th , but becomes steady when t exceeds th and reaches 30 ms. The proposed technique of modulating the thermal lensing effect by varying t has great application potential in information photonics and optoelectronic devices, such as variable optical attenuators, holographic recording media, optical limiters and optical switches.
By chopping 820 nm 18 femtosecond (fs)-laser pulses, continuously generated by a self-mode locked Ti:Al2O3 laser at 82 MHz, into trains with both train-width and train-to-train separation considerably longer than the thermal diffusivity time constant τth of CS2, we conducted Z-scan measurements on it at various times relative to the leading pulse of each train (T's). As a result, we observed negative nonlinear refraction strengthening with T within τth and gradually stabilizing with T exceeding τth. We quantitatively explain the experimental results in terms of the thermal lensing effect. In particular, we attribute the heat generation to non-radiative relaxation of libration excited by individual 18 fs-pulses via stimulated Raman scattering. In contrast to the commonly held view of multi-photon excitation, we propose and verify a new heat-generating mechanism for the thermal lensing effect in CS2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.