BackgroundOrange-spotted grouper (Epinephelus coioides) with protogynous hermaphroditic features are one of the most economically important aquaculture species in Taiwan. However, larvae stage grouper are susceptible to infection by the bacterial pathogen Vibrio alginolyticus. To better understand the molecular mechanisms of the immune response to V. alginolyticus in Epinephelus coioides larvae, we used high-throughput deep sequencing technology to study the effect of infection on gene expression.ResultsA total of 114,851,002 reads were assembled, consisting of 9,687,355,560 nucleotides; these were further assembled into 209,082 contigs with a mean length of 372 bp. Gene ontology (GO) analysis of the transcriptome revealed 12 cellular component subcategories, 16 molecular function subcategories, and 42 biological process subcategories (P value <0.05). A total of 32664 Epinephelus coioides genes were mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG); 1504 differentially expressed genes (DEGs) were subsequently identified, in 12 categories (P value <0.05). Vibrio infection affected the expression of genes involved in complementation, coagulation cascades, pathogen (Staphylococcus aureus) infection, phagosome activity, antigen processing, and the antigen presentation pathway.ConclusionWe conclude that the complement pathway of innate immunity and the hepicidin antimicrobial peptide may play important roles in the defense of Epinephelus coioides larvae against V. alginolyticus, and the immune response may activate at 4 h after bacterial infection. These results implicate the complement pathway signal pathway in immunity during V. alginolyticus infection at early developmental stages, enhancing our understanding of the mechanisms underlying the immune response to Vibrio infection in Epinephelus coioides.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-1102) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.