To reduce surface contamination and increase battery life, MoO3 nanoparticles were coated with a high-voltage (5 V) LiNi0.5Mn1.5O4 cathode material by in-situ method during the high-temperature annealing process. To avoid charging by more than 5 V, we also developed a system based on anode-limited full-cell with a negative/positive electrode (N/P) ratio of 0.9. The pristine LiNi0.5Mn1.5O4 was initially prepared by high-energy ball-mill with a solid-state reaction, followed by a precipitation reaction with a molybdenum precursor for the MoO3 coating. The typical structural and electrochemical behaviors of the materials were clearly investigated and reported. The results revealed that a sample of 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode exhibited an optimal electrochemical activity, indicating that the MoO3 nanoparticle coating layers considerably enhanced the high-rate charge–discharge profiles and cycle life performance of LiNi0.5Mn1.5O4 with a negligible capacity decay. The 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode could achieve high specific discharge capacities of 131 and 124 mAh g−1 at the rates of 1 and 10 C, respectively. In particular, the 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode retained its specific capacity (87 mAh g−1) of 80.1% after 500 cycles at a rate of 10 C. The Li4Ti5O12/LiNi0.5Mn1.5O4 full cell based on the electrochemical-cell (EL-cell) configuration was successfully assembled and tested, exhibiting excellent cycling retention of 93.4% at a 1 C rate for 100 cycles. The results suggest that the MoO3 nano-coating layer could effectively reduce side reactions at the interface of the LiNi0.5Mn1.5O4 cathode and the electrolyte, thus improving the electrochemical performance of the battery system.
Morphology plays a vital role in controlling the volume variation in Si-based anode materials and enhances lithiumion battery performances. Here, we demonstrated advanced techniques that combine electrostatic self-assembly and spraydrying methods to form 3D spherical-like silicon/graphite (denoted "Si/G") composite anode materials. This spherical morphology alleviates issues relating to silicon volume changes that occur in high-rate lithium-ion batteries. Commercial graphite (G) flakes were initially mixed with silicon nanoparticles (ca. 50 nm) to form a bare-Si/G composite through electrostatic interaction; sphericallike composite particles were then obtained through single and double spray-drying processes, giving samples SD1-Si/G and SD2-Si/G, respectively. We examined the charge/discharge characteristics of the fabricated electrodes (CR2032-type coin cells) in the voltage range 0.02−1.5 V (vs Li/Li + ). The as-fabricated bare-Si/G, SD1-Si/G, and SD2-Si/G half-cells provided initial discharge specific capacities of 897, 866, and 1020 mA h g −1 , respectively. The SD2-Si/G half-cell shows better cycling stability at a high current rate of 400 mA g −1 than the SD1-Si/G and bare-Si/G half-cells due to effective inhibition of the volume change in the more stable spherical structure of the SD2-Si/G composite, as evidenced through in situ dilatometry. Thus, the spherical Si/G composite material produced through this simple spray-drying process had structural characteristics that could effectively resist silicon's high expansion rate, lower the production rate of broken silicon particles, and improve the electrochemical performance of the anode.
High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is a promising cathode material for next-generation lithium-ion batteries (LIBs), but its poor cycle performance has impeded its commercialization. In this study, we developed highly stable LNMO cathode materials having an octahedral morphology through a solid-state high-energy ball-mill–cum–spray-drying method. We also developed a novel strategy for modifying this cathode material with two kinds of carbon materials, thereby improving the electrochemical cycling performance. Introducing single-walled carbon nanotubes (SWCNTs) as a sub-carbon conductive additive during the slurry preparation process improved the conductivity of electrons between the particles of the cathode material. The LNMO electrode modified with the SWCNT sub-carbon additives exhibited an average Coulombic efficiency of 99.4% after 500 cycles at 1C, compared with 98.9% for the pristine LNMO-based electrode. Furthermore, we used a wet-chemical method to coat graphene oxide (GO) onto the post-sintered LNMO cathode material to act as a protective layer, preventing corrosion induced by HF in the electrolyte. The capacity retention of the GO-coated LNMO electrode after 500 cycles at 1C (91.8%) was higher than that of the pristine LNMO (52.5%). The corresponding dual-modification strategy, combining the SWCNTs and GO, provided LNMO cathode materials exhibiting superior rate performance and cyclability, with an average Coulombic efficiency of 99.3% and capacity retention of 92.9% after 500 cycles at 1C. Thus, the LNMO cathode materials prepared in this study possessed excellent electrochemical properties favoring their marketability, applicability, and competitiveness for application in high-voltage LIBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.