The probability of electric vehicle rollover accident can be effectively reduced by shortening the prediction time interval and improving the prediction accuracy. Based on a multilayer neural network, an improved time-to-rollover method is presented in this paper. Firstly, the force model of vehicle rollover is established and analyzed where the structure and mass of a battery box have an important influence on the occurrence of rollover. Then, the rollover indexes considering hyperparameters are divided into five categories, and the multi-layer neural network is used to simplify the algorithm structure of the time to rollover, and quickly calculate the operating state parameters with a variation step size in real time. Finally, the influence of the hyperparameters on the prediction results of neural network is studied, and higher efficiency is obtained by comparing with traditional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.