Lipopolysaccharide (LPS)-induced inflammatory microenvironment can enhance the dental follicle cells (DFCs) proliferation, differentiation, and adhesion abilities beneficial to periodontal regeneration, which possibly attributes the success to exosomes according to recent studies. This study aimed to investigate the therapeutic efficacy and underlying mechanisms of LPS-preconditioned DFC-derived small extracellular vesicles (sEVs), which enriched exosomes for periodontal regeneration in an inflammatory microenvironment. LPS preconditioning could significantly increase the secretion of sEVs derived from DFCs. Both LPS-preconditioned dental follicle cell-derived sEV (L-D-sEV) and DFC-derived sEV (D-sEV) promoted the proliferation of periodontal ligament cells from periodontitis (p-PDLCs) with a dose-dependent and saturable manner and also enhanced the migration and differentiation of p-PDLCs. Furthermore, L-D-sEV showed a modest benefit than D-sEV to promote p-PDLCs differentiation. In vivo, an L-D-sEV-loaded hydrogel applied in the treatment of periodontitis was beneficial to repair lost alveolar bone in the early stage of treatment and to maintain the level of alveolar bone in the late stage of treatment in experimental periodontitis rats, which could partly decrease the expression of the RANKL/OPG ratio. In conclusion, L-D-sEV was beneficial to p-PDLCs forming an integrity periodontal tissue. The biological injectable L-D-sEV-loaded hydrogel could be used as a treatment method for experimental periodontitis in rats, promoting periodontal tissue regeneration and providing a new alternative cell therapy method for periodontal tissue regeneration.
BackgroundWe derived mesenchymal stem cells (MSCs) from rat induced pluripotent stem cells (iPSCs) and transduced them with tumor necrosis factor alpha-stimulated gene-6 (TSG-6), to test whether TSG-6 overexpression would boost the therapeutic effects of iPSC-derived MSCs in experimental periodontitis.MethodsA total of 30 female Sprague-Dawley (SD) rats were randomly divided into four groups: healthy control group (Group-N, n = 5), untreated periodontitis group (Group-P, n = 5), iPS-MSCs-treated and iPSC-MSCs/TSG-6-treated periodontitis groups (Group-P1 and P2, n = 10 per group). Experimental periodontitis was established by ligature and infection with Porphyromonas gingivalis around the maxillae first molar bilaterally. MSC-like cells were generated from rat iPSCs, and transducted with TSG-6. iPSC-MSCs or iPSC-MSCs/TSG-6 were administrated to rats in Group-P1 or P2 intravenously and topically, once a week for three weeks. Blood samples were obtained one week post-injection for the analysis of serum pro-inflammatory cytokines. All animals were killed 3 months post-treatment; maxillae were then dissected for histological analysis, tartrate-resistant acid phosphatase (TRAP) staining, and morphological analysis of alveolar bone loss.ResultsAdministration of iPSC-MSC/TSG-6 significantly decreased serum levels of IL-1β and TNF-α in the Group-P2 rats (65.78 pg/ml and 0.56 pg/ml) compared with those in Group-P (168.31 pg/ml and 1.15 pg/ml respectively) (p<0.05). Both alveolar bone loss and the number of TRAP-positive osteoclasts showed a significant decrease in rats that received iPSC-MSC/TSG-6 treatment compared to untreated rats in Group-P (p<0.05),ConclusionsWe demonstrated that overexpression of TSG-6 in rat iPSC-derived MSCs were capable of decreasing inflammation in experimental periodontitis and inhibiting alveolar bone resorption. This may potentially serve as an alternative stem-cell-based approach in the treatment and regeneration of periodontal tissues.
In this study, we investigated the periodontal regenerative potential of dental follicle cell (DFC) sheets and periodontal ligament cell (PDLC) sheets in the simulating inflammatory microenvironment of periodontitis, to confirm their regenerative potential for clinical application and explain the possible mechanism. The biological characteristics of DFC sheets and PDLC sheets were explored in lipopolysaccharide from Porphyromonas gingivalis (P. gingivalis LPS)-induced inflammation microenvironment in vitro, then cell sheets were transplanted into canine periodontal defects with experimental periodontitis in situ for 3 months. The results showed that P. gingivalis LPS greatly impaired the differentiation of PDLC sheets, whereas promoted gene expression of bone sialoprotein (BSP), osteopontin (OPN), and periostin (POSTN) in DFC sheets. LPS activated toll-like receptor 4 and NF-κB p65 phosphorylation in PDLC sheets. In experimental periodontitis, new periodontal attachment could be obtained in both PDLC sheets and DFC sheets. However, the complete periodontal regeneration, including periodontal ligament-cementum complex structure was observed only in DFC sheet groups, which also showed more alveolar bone formation than PDLC sheets. These results suggest that DFC sheets were more effective for periodontal regeneration in chronic inflammatory microenvironment of periodontitis. It is probably because of their ability to adapt the inflammatory environment and strong capacity to promote periodontal regeneration. This approach provides a tangible pathway toward clinical translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.