Long-term stable cell culture is a critical tool to better understand cell function. Most adherent cell culture models require a polymer substrate coating of poly-lysine or poly-ornithine for the cells to adhere and survive. However, polypeptide-based substrates are degraded by proteolysis and it remains a challenge to maintain healthy cell cultures for extended periods of time. Here, we report the development of an enhanced cell culture substrate based on a coating of dendritic polyglycerol amine (dPGA), a non-protein macromolecular biomimetic of poly-lysine, to promote the adhesion and survival of neurons in cell culture. We show that this new polymer coating provides enhanced survival, differentiation and long-term stability for cultures of primary neurons or neurons derived from human induced pluripotent stem cells (hiPSCs). Atomic force microscopy analysis provides evidence that greater nanoscale roughness contributes to the enhanced capacity of dPGA-coated surfaces to support cells in culture. We conclude that dPGA is a cytocompatible, functionally superior, easy to use, low cost and highly stable alternative to poly-cationic polymer cell culture substrate coatings such as poly-lysine and poly-ornithine. Summary statement Here, we describe a novel dendritic polyglycerol amine-based substrate coating, demonstrating superior performance compared to current polymer coatings for long-term culture of primary neurons and neurons derived from induced pluripotent stem cells.
In this paper, a hierarchical driving force distribution and control strategy for a six-wheel drive (6WD) skid-steering electric unmanned ground vehicle (EUGV) with independent drive motors is presented to improve the vehicle maneuverability and stability. The proposed hierarchical strategy is based on a nine-degrees-of-freedom (DOFs) dynamics model of 6WD skid-steering EUGV with a vehicle system dynamics model, wheel dynamics model, and tire model. In the proposed hierarchical strategy, the upper layer controller calculates the resultant driving force and yaw moment to control the vehicle motion states to track the desired ones by using the integral sliding mode control (ISMC) and proportion–integral–differential (PID) control methods. In the lower layer controllers, the driving force distribution method is adopted to allocate torques to the six motors. An objective function is proposed and composed of the longitudinal tire workload rates and weighting factors, considering the inequality constraints and equality constraints, which is solved by using the active set method. In order to evaluate the effectiveness of the proposed method, experiments with two types of scenarios were conducted. Comparative studies were also conducted with the other two methods used in the literature. The experimental results show that better performance can be achieved with the proposed control strategy in vehicle maneuverability and stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.