Ionic current rectification (ICR) based nanopipettes allow accurate monitoring of cellular behavior in single living cells. Herein, we proposed a 30 nm nanopipette functionalized with G-quadruplex DNAzyme as an efficient biomimetic recognizer for ROS generation at subcellular level via the changes of current-voltage relationship. Taking advantages of the ultra-small tip, the nanopipette could penetrate into a single living cell repeatedly or keep measuring for a long time without compromising the cellular functions. Coupled with precision nanopositioning system, generation of ROS in mitochondria in response to cell inflammation was determined with high spatial resolution. Meanwhile, the changes of aerobic metabolism in different cell lines under drug-induced oxidative stress were monitored continuously. We believe that the ICR-nanopipette could be developed as a powerful approach for the study of cellular activities via electrochemical imaging in living cells.
New tools for single‐cell interrogation enable deeper understanding of cellular heterogeneity and associated cellular behaviors and functions. Information of RNA expression in single cell could contribute to our knowledge of the genetic regulatory circuits and molecular mechanism of disease development. Although significant progresses have been made for intracellular RNA analysis, existing methods have a trade‐off between operational complexity and practical feasibility. We address this challenge by combining the ionic current rectification property of nanopipette reactor with duplex‐specific nuclease‐assisted hybridization chain reaction for signal amplification to realize a simple and practical intracellular nanosensor with minimal invasiveness, which enables single‐cell collection and electrochemical detection of intracellular RNA with cell‐context preservation. Systematic studies on differentiation of oncogenic miR‐10b expression levels in non‐malignant breast cells, metastatic breast cancer cells as well as non‐metastatic breast cancer cells were then realized by this nanotool accompanied by assessment of different drugs effects. This work has unveiled the ability of electrochemistry to probe intracellular RNA and opened new opportunities to study the gene expression and heterogeneous complexity under physiological conditions down to single‐cell level.
With reduced background and high sensitivity, photoelectrochemistry (PEC) may be applied as an intracellular nanotool and open a new technological direction of single‐cell study. Nevertheless, the present palette of single‐cell tools lacks such a PEC‐oriented solution. Here a dual‐functional photocathodic single‐cell nanotool capable of direct electroosmotic intracellular drug delivery and evaluation of oxidative stress is devised by engineering a target‐specific organic molecule/NiO/Ni film at the tip of a nanopipette. Specifically, the organic molecule probe serves simultaneously as the biorecognition element and sensitizer to synergize with p‐type NiO. Upon intracellular delivery at picoliter level, the oxidative stress effect will cause structural change of the organic probe, switching its optical absorption and altering the cathodic response. This work has revealed the potential of PEC single‐cell nanotool and extended the boundary of current single‐cell electroanalysis.
In this Letter, on the basis of the CdS quantum dots functionalized TiO2 nanotubes electrode, we proposed a simultaneous photoelectrochemical (PEC) immunoassay of dual cardiac markers using specific enzyme tags of alkaline phosphatase (ALP) and acetylcholine esterase (AChE). ALP and AChE were integrated into the PEC system through the sandwich immunobinding and could specifically catalyze the hydrolysis of ascorbic acid 2-phosphate (AAP) or the acetylthiocholine (ATC) to in situ generate ascorbic acid (AA) or thiocholine (TC) for sacrificial electron donating. These two enzymes were thus used to differentiate the signals of two cardiac targets in connection with the sandwich immunorecognition and PEC responses to the corresponding electron donors. This strategy demonstrates a proof of principle for the successful integration of dual enzyme tags with PEC immunoassay that can potentially provide a general format for multiplexed PEC bioanalysis.
This work reports a plasmonic strategy capable of label-free yet amplified photoelectrochemical (PEC) immunoassay for the sensitive and specific detection of model protein p53, an important transcription factor that regulates the cell cycle and functions as a tumor suppressor. Specifically, on the basis of Au nanoparticles (NPs) deposited on hierarchically ordered TiO2 nanotubes (NTs), a protein G molecular membrane was used for immobilization of alkaline phosphatase (ALP) conjugated anti-p53 (ALP-a-p53). Due to the immunological recognition between the receptor and target, the plasmonic charge separation from Au NPs to the conduction band of TiO2 NTs could be influenced greatly that originated from multiple factors. The degree of signal suppression is directly associated with the target concentration, so by monitoring the changes of the plasmonic photocurrent responding after the specific binding, a new plasmonic PEC immunoassay could be tailored for label-free and amplified detection. The operating principle of this study could be extended as a general protocol for numerous other targets of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.