Paroxysmal 5- to 12-Hz high-voltage rhythmic spike (HVRS) activities, which are accompanied by whisker twitching (WT), are found in Long Evans rats, but the function of these HVRS activities is still debated. In four major functional hypotheses of HVRS discharges, i.e., alpha tremor, attention/mu rhythm, idling/mu rhythm, and absence seizure, the first two hypotheses emphasize WT behavior in HVRS bouts. Whisker movement is primarily determined by activation of intrinsic and extrinsic muscles. To clarify the role of WT in HVRS activities, simultaneous recording of the activities from the cortex and intrinsic/extrinsic and neck muscles were performed. Most HVRS bouts (68.8%) revealed no time-locked WT behavior in a 2-h recording session. In addition, WT primarily arose from active protraction due to activation of intrinsic muscles followed by passive retraction. A small portion of WT resulted from activation of both vibrissae muscles with dynamic frequency-dependent phase shifts. Onset of the rhythmic vibrissae EMG significantly lagged behind HVRS onset, and the mean duration of vibrissae muscle activity was one-third to a one-half of a HVRS bout. Moreover, a greater number of HVRS bouts were associated with a longer HVRS duration and higher oscillation frequency. Oscillation frequencies of HVRS activities without WT behavior were significantly lower than those with WT. Under peripheral sensory/motor blockade by xylocaine injection, oscillation frequencies of HVRS bouts significantly decreased, but no remarkable changes in the number or duration of HVRS bouts were observed. Compared with vibrissa muscle activity during WT and exploratory whisking, the duration of muscular activity in each cycle was apparently longer during whisking bouts. Based on these results, overemphasis of the role of WT on HVRS activities might not be appropriate. Instead, HVRS discharges may be associated with absence seizure or idling state. In addition, peripheral inputs, including WT, may elevate the oscillation frequency of HVRS bouts. Moreover, different muscular controls may exist between WT and whisking.
Shaw FZ, Liao YF, Chen RF, Huang YH, Lin RC. The zona incerta modulates spontaneous spike-wave discharges in the rat. J Neurophysiol 109: 2505-2516, 2013. First published February 27, 2013 doi:10.1152/jn.00750.2011The contribution of the zona incerta (ZI) of the thalamus on spike-wave discharges (SWDs) was investigated. Chronic recordings of bilateral cortices, bilateral vibrissa muscle, and unilateral ZI were performed in Long-Evans rats to examine the functional role of SWDs. Rhythmic ZI activity appeared at the beginning of SWD and was accompanied by higher-oscillation frequencies and larger spike magnitudes. Bilateral lidocaine injections into the mystacial pads led to a decreased oscillation frequency of SWDs, but the phenomenon of ZI-related spike magnitude enhancement was preserved. Moreover, 800-Hz ZI microstimulation terminates most of the SWDs and whisker twitching (WT; Ͼ80%). In contrast, 200-Hz ZI microstimulation selectively stops WTs but not SWDs. Stimulation of the thalamic ventroposteriomedial nucleus showed no obvious effect on terminating SWDs. A unilateral ZI lesion resulted in a significant reduction of 7-to 12-Hz power of both the ipsilateral cortical and contralateral vibrissae muscle activities during SWDs. Intraincertal microinfusion of muscimol showed a significant inhibition on SWDs. Our present data suggest that the ZI actively modulates the SWD magnitude and WT behavior. zona incerta; absence seizure; spike-wave discharge; tremor; deep brain stimulation IT IS WELL-KNOWN THAT ABSENCE epilepsy is characterized by an abrupt and brief loss of awareness in coincidence with generalized spike-wave discharges (SWDs). The cortex and thalamus, often referred to as the thalamocortical network, appear to play an essential role in the generation of paroxysmal absence seizures (Timofeev and Steriade
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.