Considerable advances have been made recently in organic/polymeric electronic materials and devices. [1][2][3][4][5] These materials are useful as active layers in applications such as nonlinear optical devices, 6-8 light-emitting diodes (LED), 9,10 and thin-film field-effect transistors (FETs). [11][12][13][14][15][16][17][18][19][20] We have been studying different materials for thin-film FETs in which the active semiconductor layer consists of organic molecular or polymeric materials. 15,[19][20][21] Organic FETs have potential applications in low-cost large area flexible displays and low-end data storage devices such as smart cards. Organic materials offer numerous advantages for easy processing (e.g., spin-coating, printing, evaporation), good compatibility with a variety of substrates including flexible plastics, and great opportunities in structural modifications. 18,22 Screen printing is a simple and environment-friendly way to produce electronic circuitry and make interconnections. 23 It is a purely additive method in which ink is added where needed. Therefore, patterns can be formed in a single step. With a pitch of printed lines as fine as 250 µm, the printing process can significantly
Fabrication of unconventional energy storage devices with high stretchability and performance is challenging, but critical to practical operations of fully power-independent stretchable electronics. While supercapacitors represent a promising candidate for unconventional energy-storage devices, existing stretchable supercapacitors are limited by their low stretchability, complicated fabrication process, and high cost. Here, we report a simple and low-cost method to fabricate extremely stretchable and high-performance electrodes for supercapacitors based on new crumpled-graphene papers. Electrolyte-mediated-graphene paper bonded on a compliant substrate can be crumpled into self-organized patterns by harnessing mechanical instabilities in the graphene paper. As the substrate is stretched, the crumpled patterns unfold, maintaining high reliability of the graphene paper under multiple cycles of large deformation. Supercapacitor electrodes based on the crumpled graphene papers exhibit a unique combination of high stretchability (e.g., linear strain ~300%, areal strain ~800%), high electrochemical performance (e.g., specific capacitance ~196 F g−1), and high reliability (e.g., over 1000 stretch/relax cycles). An all-solid-state supercapacitor capable of large deformation is further fabricated to demonstrate practical applications of the crumpled-graphene-paper electrodes. Our method and design open a wide range of opportunities for manufacturing future energy-storage devices with desired deformability together with high performance.
The development of stretchable electronics requires the invention of compatible high-performance power sources, such as stretchable supercapacitors and batteries. In this work, two-dimensional (2D) titanium carbide (Ti 3 C 2 T x ) MXene is being explored for flexible and printed energy storage devices by fabrication of a robust, stretchable high-performance supercapacitor with reduced graphene oxide (RGO) to create a composite electrode. The Ti 3 C 2 T x /RGO composite electrode combines the superior electrochemical and mechanical properties of Ti 3 C 2 T x and the mechanical robustness of RGO resulting from strong nanosheet interactions, larger nanoflake size, and mechanical flexibility. It is found that the Ti 3 C 2 T x /RGO composite electrodes with 50 wt % RGO incorporated prove to mitigate cracks generated under large strains. The composite electrodes exhibit a large capacitance of 49 mF/cm 2 (∼490 F/cm 3 and ∼140 F/g) and good electrochemical and mechanical stability when subjected to cyclic uniaxial (300%) or biaxial (200% × 200%) strains. The as-assembled symmetric supercapacitor demonstrates a specific capacitance of 18.6 mF/cm 2 (∼90 F/cm 3 and ∼29 F/g) and a stretchability of up to 300%. The developed approach offers an alternative strategy to fabricate stretchable MXene-based energy storage devices and can be extended to other members of the large MXene family.
The fabrication and characteristics of organic smart pixels are described. The smart pixel reported in this letter consists of a single organic thin-film field effect transistor (FET) monolithically integrated with an organic light-emitting diode. The FET active material is a regioregular polythiophene. The maximum optical power emitted by the smart pixel is about 300 nW/cm2 corresponding to a luminance of ∼2300 cd/m2.
Biological systems can generate microstructured materials that combine organic and inorganic components and possess diverse physical and chemical properties. However, these natural processes in materials fabrication are not readily programmable. Here, we use a synthetic-biology approach to mimic such natural processes to assemble patterned materials.. We demonstrate programmable fabrication of three-dimensional (3D) materials by printing engineered self-patterning bacteria on permeable membranes that serve as a structural scaffold. Application of gold nanoparticles to the colonies creates hybrid organic-inorganic dome structures. The dynamics of the dome structures' response to pressure is determined by their geometry (colony size, dome height and pattern), which is easily modified by varying the properties of the membrane (e.g., pore size and hydrophobicity). We generate resettable pressure sensors that process signals in response to varying pressure intensity and duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.