High mobility group box 1 protein (HMGB1), originally characterized as a nuclear DNA-binding protein, has also been described to have an extracellular role when it is involved in cellular activation and proinflammatory responses. In this study, FLAG-tagged HMGB1 was inducibly expressed in the presence of culture media with or without added IL-1β, IFN-γ, or TNF-α. HMGB1 purified from cells grown in culture media alone only minimally increased cytokine production by MH-S macrophages and had no effect on murine neutrophils. In contrast, HMGB1 isolated from cells cultured in the presence of IL-1β, IFN-γ, and TNF-α had enhanced proinflammatory activity, resulting in increased production of MIP-2 and TNF-α by exposed cells. IL-1β was bound to HMGB1 isolated from cells cultured with this cytokine, and purified HMGB1 incubated with recombinant IL-1β acquired proinflammatory activity. Addition of anti-IL-1β Abs or the IL-1 receptor antagonist to cell cultures blocked the proinflammatory activity of HMGB1 purified from IL-1β-exposed cells, indicating that such activity was dependent on interaction with the IL-1 receptor. These results demonstrate that HMGB1 acquires proinflammatory activity through binding to proinflammatory mediators, such as IL-1β.
IFN-β-1a has been used over the past 15 years as a primary therapy for relapsing-remitting multiple sclerosis (MS). However, the immunomodulatory mechanisms that provide a therapeutic effect against this CNS inflammatory disease are not yet completely elucidated. The effect of IFN-β-1a on Th17 cells, which play a critical role in the development of the autoimmune response, has not been extensively studied in humans. We have investigated the effect of IFN-β-1a on dendritic cells (DCs) and naive CD4+CD45RA+ T cells derived from untreated MS patients and healthy controls in the context of Th17 cell differentiation. We report that IFN-β-1a treatment down-regulated the expression of IL-1β and IL-23p19 in DCs, whereas it induced the gene expression of IL-12p35 and IL-27p28. We propose that IFN-β-1a-mediated up-regulation of the suppressor of cytokine signaling 3 expression, induced via STAT3 phosphorylation, mediates IL-1β and IL-23 down-regulation, while IFN-β-1a-induced STAT1 phosphorylation induces IL-27p28 expression. CD4+CD45RA+ naive T cells cocultured with supernatants from IFN-β-1a-treated DCs exhibited decreased gene expression of the Th17 cell markers retinoic acid-related orphan nuclear hormone receptor c (RORc), IL-17A, and IL-23R. A direct IFN-β-1a treatment of CD45RA+ T cells cultured in Th17-polarizing conditions also down-regulated RORc, IL-17A, and IL-23R, but up-regulated IL-10 gene expression. Studies of the mechanisms involved in the Th17 cell differentiation suggest that IFN-β-1a inhibits IL-17 and induces IL-10 secretion via activated STAT1 and STAT3, respectively. IFN-β’s suppression of Th17 cell differentiation may represent its most relevant mechanism of selective suppression of the autoimmune response in MS.
Rationale: Mitochondria have important roles in intracellular energy generation, modulation of apoptosis, and redox-dependent intracellular signaling. Although reactive oxygen species (ROS) participate in the regulation of intracellular signaling pathways, including activation of nuclear factor (NF)-kB, there is only limited information concerning the role of mitochondrially derived ROS in modulating cellular activation and tissue injury associated with acute inflammatory processes. Objectives: To examine involvement of the mitochondrial electron transport chain complex I on LPS-mediated NF-kB activation in neutrophils and neutrophil-dependent acute lung injury. Methods: Neutrophils incubated with rotenone or metformin were treated with bacterial lipopolysaccharide (LPS) to determine the effects of mitochondrial complex I inhibition on intracellular concentrations of reactive oxygen species, NF-kB activation, and proinflammatory cytokine expression. Acute lung injury was produced by intratracheal injection of LPS into control, metformin, or rotenonetreated mice. Measurements and Main Results: Inhibition of complex I with either rotenone or the antihyperglycemic agent metformin was associated with increased intracellular levels of both superoxide and hydrogen peroxide, as well as inhibition of LPS-induced IkB-a degradation, NFkB nuclear accumulation, and proinflammatory cytokine production. Treatment of LPS-exposed mice with rotenone or metformin resulted in inhibition of complex I in the lungs, as well as diminished severity of lung injury.Conclusions: These results demonstrate that mitochondrial complex I plays an important role in modulating Toll-like receptor 4-mediated neutrophil activation and suggest that metformin, as well as other agents that inhibit mitochondrial complex I, may be useful in the prevention or treatment of acute inflammatory processes in which activated neutrophils play a major role, such as acute lung injury.
Background Post-translational modification of proteins by S-nitrosylation serves as a major mode of signaling in mammalian cells and a growing body of evidence has shown that transcription factors and their activating pathways are primary targets. S-nitrosylation directly modifies a number of transcription factors, including NF-κB, HIF-1, and AP-1. In addition, S-nitrosylation can indirectly regulate gene transcription by modulating other cell signaling pathways, in particular JNK kinase and ras. Scope of review The evolution of S-nitrosylation as a signaling mechanism in the regulation of gene transcription, physiological advantages of protein S-nitrosylation in the control of gene transcription, and discussion of the many transcriptional proteins modulated by S-nitrosylation is summarized. Major conclusions S-nitrosylation plays a crucial role in the control of mammalian gene transcription with numerous transcription factors regulated by this modification. Many of these proteins serve as immunomodulators, and inducible nitric oxide synthase (iNOS) is regarded as a principal mediatiator of NO-dependent S-nitrosylation. However, additional targets within the nucleus (e.g. histone deacetylases) and alternative mechanisms of S-nitrosylation (e.g. GAPDH-mediated trans-nitrosylation) are thought to play a role in NOS-dependent transcriptional regulation. General significance Derangement of SNO-regulated gene transcription is an important factor in a variety of pathological conditions including neoplasia and sepsis. A better understanding of protein S-nitrosylation as it relates to gene transcription and the physiological mechanisms behind this process is likely to lead to novel therapies for these disorders. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.