Neutrophil abscess formation is critical in innate immunity against many pathogens. Here, the mechanism of neutrophil abscess formation was investigated using a mouse model of Staphylococcus aureus cutaneous infection. Gene expression analysis and in vivo multispectral noninvasive imaging during the S. aureus infection revealed a strong functional and temporal association between neutrophil recruitment and IL-1β/IL-1R activation. Unexpectedly, neutrophils but not monocytes/macrophages or other MHCII-expressing antigen presenting cells were the predominant source of IL-1β at the site of infection. Furthermore, neutrophil-derived IL-1β was essential for host defense since adoptive transfer of IL-1β-expressing neutrophils was sufficient to restore the impaired neutrophil abscess formation in S. aureus-infected IL-1β-deficient mice. S. aureus-induced IL-1β production by neutrophils required TLR2, NOD2, FPR1 and the ASC/NLRP3 inflammasome in an α-toxin-dependent mechanism. Taken together, IL-1β and neutrophil abscess formation during an infection are functionally, temporally and spatially linked as a consequence of direct IL-1β production by neutrophils.
Post-arthroplasty infections are a devastating problem in orthopaedic surgery. While acute infections can be treated with a single stage washout and liner exchange, chronic infections lead to multiple reoperations, prolonged antibiotic courses, extended disability and worse clinical outcomes. Unlike previous mouse models that studied an acute infection, this work aimed to develop a model of a chronic post-arthroplasty infection. To achieve this, a stainless steel implant in the knee joints of mice was inoculated with a bioluminescent S. aureus strain (1×102–1×104 CFUs) and in vivo imaging was used to monitor the bacterial burden for 42 days. Four different S. aureus stains were compared in which the bioluminescent construct was integrated in an antibiotic selection plasmid (ALC2906), the bacterial chromosome (Xen29 and Xen40) or a stable plasmid (Xen36). ALC2906 had increased bioluminescent signals through day 10, after which the signals became undetectable. In contrast, Xen29, Xen40 and Xen36 had increased bioluminescent signals through 42 days with the highest signals observed with Xen36. ALC2906, Xen29 and Xen40 induced significantly more inflammation than Xen36 as measured by in vivo EGFP-neutrophil florescence of LysEGFP mice. All four strains induced comparable biofilm formation as determined by variable-pressure scanning electron microscopy. Using a titanium implant, Xen36 had higher in vivo bioluminescence signals than Xen40 but had similar biofilm formation and adherent bacteria. In conclusion, Xen29, Xen40 and especially Xen36, which had stable bioluminescence constructs, are feasible for long-term in vivo monitoring of bacterial burden and biofilm formation to study chronic post-arthroplasty infections and potential antimicrobial interventions.
Objective Vessels in brain arteriovenous malformations (bAVM) are prone to rupture. The underlying pathogenesis is not clear. Hereditary hemorrhagic telangiectasia type 2 (HHT2) patients with activin receptor-like kinase 1 (Alk1) mutation have a higher incidence of bAVM than the general population. We tested the hypothesis that vascular endothelial growth factor (VEGF) impairs vascular integrity in the Alk1-deficient brain through reduction of mural cell-coverage. Methods and Results Adult Alk11f/2f mice (loxP sites flanking exons 4-6) and wild-type (WT) mice were injected with 2×107 PFU Ad-Cre and 2×109 genome copies of AAV-VEGF to induce focal homozygous Alk1 deletion (in Alk11f/2f mice) and angiogenesis. Brain vessels were analyzed eight weeks later. Compared to WT mice, the Alk1-deficient brain had more fibrin (99±30×103 pixels/mm2 vs. 40±13×103, P=0.001), iron deposition (508±506 pixels/mm2 vs. 6 ±49, P=0.04), and Iba1+ microglia/macrophage infiltration (888±420 Iba1+ cells/mm2 vs. 240±104 Iba1+, P=0.001) after VEGF stimulation. In the angiogenic foci, the Alk1-deficient brain had more α-SMA- vessels (52±9% vs. 12±7%, P<0.001), fewer vascular associated pericytes (503±179/mm2 vs. 931±115, P<0.001), and reduced PDGFR-β expression (26±9%, P<0.001). Conclusion Reduction of mural cell coverage in response to VEGF stimulation is a potential mechanism for the impairment of vessel wall integrity in HHT2-associated bAVM.
Cancer initiating cells (CICs) are responsible for the unrestrained cell growth and chemoresistance of malignant tumors. Histone demethylation has been shown to be crucial for self-renewal/differentiation of stem cells, but it remains elusive whether lysine-specific demethylase 1 (LSD1) regulates the stemness properties of CICs. Here we report that the abundant expression of leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is associated with the progression of hepatocellular carcinoma (HCC). Lgr5(+) HCC cells behave similarly to CICs and are highly tumorigenic and resistant to chemotherapeutic agents. Importantly, Lgr5(+) cells express higher levels of LSD1, which in turn regulates Lgr5 expression and promotes the self-renewal and drug resistance of Lgr5(+) CICs. Mechanistically, LSD1 promotes β-catenin activation by inhibiting the expression of several suppressors of β-catenin signaling, especially Prickle1 and APC in Lgr5(+) CICs, by directly regulating the levels of mono- and di-methylation of histone H3 lysine-4 at the promoters of these genes. Furthermore, LSD1-associated activation of the β-catenin signaling is essential for maintaining the activity of Lgr5(+) CICs. Together, our findings unravel the LSD1/Prickle1/APC/β-catenin signaling axis as a novel molecular circuit regulating the stemness and chemoresistance of hepatic Lgr5(+) CICs and provide potential targets to improve chemotherapeutic efficacies against HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.