Design tasks are omnipresent in our everyday lives. Previous research shows that reflective thinking is one of the critical factors in solving design problems. Related research has attempted to capture designers' reflective thinking process. Yet a close inspection of designers' reflective thinking taking place during their design process demands further effort. To understand designer's reflective practice and to find better ways to promote novices' reflective thinking in solving real-world design problems, a comprehensive model was developed. This model identified three dimensions to guide the understanding of designers' reflective thinking during a design process: (1) the timing of reflection, indicating the points in the process where reflective thinking occurs, (2) the objects of reflection, showing the different types of objects that designers may reflect upon, and (3) the levels of reflection, referring to the different levels of designers' reflection. This model provides for meaningful aspects of reflective thinking to be situated in a design process, which can guide educators and instructional designers in developing appropriate learning environments for facilitating novice and practicing designers' reflective thinking. Moreover, the model can serve as a stepping stone for further research.
In this work, we study surface functionalization effects of artificially stacked graphene bilayers (ASGBs) to control its wetting properties via low-damage plasma. The ASGBs were prepared on a SiO 2 /Si substrate by stacking two monolayer graphene, which was grown by chemical vapor deposition. As a result, the low-damage plasma functionalization of ASGBs could hold both the key characteristics of surface functionalization and electrical transport properties of graphene sheets. To characterize ASGBs, Raman and x-ray photoelectron spectroscopy (XPS) were used to determine the degree of defect formation and functionalization. Meanwhile, the degree of the wettability of the ASGBs surface was determined by optical contact angle (CA) measurements. Based on experimental results, the compositional ratio of C-OH+COOH was found to increase 67% based on the analysis of XPS spectra after low-damage plasma treatment. This treatment effect can also be found with 75.3% decrease in the CA of water droplet on graphene. In addition, we found that the ratio of 2D/(D+G′) in Raman spectra shows strong correlation to the measured CA; it can be a reliable indicator of ASGBs surface wettability modification. This work showed that we obtained a higher degree functionalization of ASGBs without degrading the under-layer structure of ASGBs due to the moderate low-damage plasma treatment. The presented process technique of controllable wettability through low-damage plasma treatment can be employed for potential application in graphene-based sensors/devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.