The detailed unsteady turbulent flow inside a centrifugal fan and its downstream pipe was studied using detached eddy simulation (DES) at three flowrates, namely, the best efficiency point (BEP), 0.75BEP, and 1.49BEP. Both the mean and fluctuating flow fields were analyzed on the basis of the root-mean-square value as the indication of fluctuating intensity. Results showed that the pressure fluctuation had the minimum value at BEP, but the velocity fluctuation increased with the flowrate. Most regions inside the centrifugal fan underwent large pressure fluctuation with the magnitude of about 10~20% of pref = 0.5 ρu22, where u2 is the blade velocity at the impeller outlet. The pressure fluctuation had a maximum value at the impeller side of the tongue tip rather than the stagnation point, and it decreased rapidly along the outlet pipe with magnitude about 1% of pref after distance of five pipe diameters. The spectra of hydrodynamic pressure showed conspicuous spikes at the blade passing frequency (BPF) in the volute but not in the downstream pipe. At the downstream pipe entrance, pressure fluctuation spectra agreed with experimental results, showing that hydrodynamic pressure fluctuations were dominant; however, the experimental data showed a much slower decreasing rate due to the acoustic fluctuations.
The transmission in automobiles is the core component to ensure operational stability. Heat accumulation in the meshing process will reduce the transmission efficiency and affect the service life. Here, the essential physical process to improve transmission heat dissipation is the dynamic evolution process and the thermal transfer characteristics of lubricating oil fields during gear meshing. This paper presents a modeling and solving method for gear meshing lubrication and thermal transfer features based on the volume of the fluid model and piecewise linear interface construction (VOF-PLIC). The dynamic mesh technique combines spring smoothing and reconstruction to optimize the numerical solution process. The dynamic evolution law of gear meshing lubrication and thermal transfer is obtained by analyzing the lubrication evolution process under different speed/steering conditions. The results show that the proposed modeling and solving method could well reveal the lubrication and thermal transfer laws of the gear meshing. The temperature of the gear meshing regions was higher than that in the other regions, and the lubrication temperature showed an increasing linear trend with the stirring process. As the gear speed increased, the meshing resistance moment increased, the transmission power loss increased, and the lubrication oil temperature was larger than that of the gearbox. The power loss under the clockwise rotation of the driving gear G4 was higher than that under the counterclockwise rotation of the driving gear. The relevant results can provide theoretical references for the dynamic analysis of automotive transmission lubrication and technical support for gear profile design and lubrication optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.