The enrichment of mobile genetic elements in heterochromatin may be due, in part, to targeted integration. The chromoviruses are Ty3/gypsy retrotransposons with chromodomains at their integrase C termini. Chromodomains are logical determinants for targeting to heterochromatin, because the chromodomain of heterochromatin protein 1 (HP1) typically recognizes histone H3 K9 methylation, an epigenetic mark characteristic of heterochromatin. We describe three groups of chromoviruses based on amino acid sequence relationships of their integrase C termini. Genome sequence analysis indicates that representative chromoviruses from each group are enriched in gene-poor regions of the genome relative to other retrotransposons, and when fused to fluorescent marker proteins, the chromodomains target proteins to specific subnuclear foci coincident with heterochromatin. The chromodomain of the fungal element, MAGGY, interacts with histone H3 dimethyl-and trimethyl-K9, and when the MAGGY chromodomain is fused to integrase of the Schizosaccharomyces pombe Tf1 retrotransposon, new Tf1 insertions are directed to sites of H3 K9 methylation. Repetitive sequences such as transposable elements trigger the RNAi pathway resulting in their epigenetic modification. Our results suggest a dynamic interplay between retrotransposons and heterochromatin, wherein mobile elements recognize heterochromatin at the time of integration and then perpetuate the heterochromatic mark by triggering epigenetic modification.[Supplemental material is available online at www.genome.org.] (Girard et al. 2006;Grivna et al. 2006;Vagin et al. 2006). Mobile element insertions that decorate eukaryotic genomes, therefore, frequently define unique chromatin domains. Whereas the genetic consequences of transposition in terms of mutation and genome rearrangement have long been recognized, the biological consequences of their epigenetic marks, which include effects on gene expression and the formation of heterochromatin, are only beginning to be appreciated (Slotkin and Martienssen 2007).Underlying the genetic and epigenetic impact of mobile elements is integration site choice. Although forces such as selection or recombination contribute to the nonrandom distribution of mobile elements in eukaryotic genomes, an increasing number of studies indicate that many mobile elements target integration to specific chromosomal sites (Bushman 2003). For some elements, target sites are determined by recognizing specific DNA sequences, whereas for others, including several retrotransposons and retroviruses, chromatin impacts target site choice. The Ty1 and Ty3 retrotransposons of Saccharomyces cerevisiae, for example, integrate near sites of RNA polymerase III (pol III) transcription by recognizing pol III transcription complexes or chromatin states associated with pol III transcription (Yieh et al. 2000(Yieh et al. , 2002Bachman et al. 2005;Mou et al. 2006). The Tf1 retrotransposon of Schizosaccharomyces pombe recognizes certain RNA polymerase II (pol II) promoters (Singleton and L...
Podocalyxin was initially identified in glomerular podocytes to critically maintain the structural and functional integrity of the glomerular ultrafiltrative apparatus. Lately, it has emerged as a malignant marker in tumors arising from a variety of tissue origins. By immunohistochemistry, we identified that 9.6% of renal cell carcinoma patients overexpress this protein. This subset of patients had significantly shorter disease-specific and overall survivals, and, importantly, we established podocalyxin overexpression as an independent prognostic factor for latent distant metastasis with multivariate analysis. Podocalyxin down-regulation by small interfering RNA led to defective migration in model renal tubular cells, which was corrected by re-expression of podocalyxin. The activity of the small GTPase Rac1, a wellcharacterized modulator of cell migration, was diminished by podocalyxin knock-down. Conversely , podocalyxin overexpression in human embryonic kidney cells up-regulated Rac1 activity, which depended on a complex formed by podocalyxin, ERMbinding phosphoprotein 50, ezrin, and ARHGEF7, a Rac1 activator. Therefore, podocalyxin can serve as a biomarker to identify renal cell carcinoma patients with higher metastatic potential for more aggressive intervention at earlier clinical stages. (Am J Pathol
The common carp (Cyprinus carpio) as one of the most important aquaculture fishes produces over 3 million metric tones annually, approximately 10% the annual production of the all farmed freshwater fish worldwide. However, the tetraploidy genome and long generation-time of the common carp have made its breeding and genetic studies extremely difficult. Here, TALEN and CRISPR-Cas9, two versatile genome-editing tools, are employed to target common carp bone-related genes sp7, runx2, bmp2a, spp1, opg, and muscle suppressor gene mstn. TALEN were shown to induce mutations in the target coding sites of sp7, runx2, spp1 and mstn. With CRISPR-Cas9, the two common carp sp7 genes, sp7a and sp7b, were mutated individually, all resulting in severe bone defects; while mstnba mutated fish have grown significantly more muscle cells. We also employed CRISPR-Cas9 to generate double mutant fish of sp7a;mstnba with high efficiencies in a single step. These results demonstrate that both TALEN and CRISPR-Cas9 are highly efficient tools for modifying the common carp genome, and open avenues for facilitating common carp genetic studies and breeding.
PPP2R2B, a protein widely expressed in neurons, regulates the protein phosphatase 2A (PP2A) activity for dephosphorylation of tau and other substrates. CAG repeat expansion at the 5'-end of the PPP2R2B gene causes autosomal dominant spinocerebellar ataxia type 12. In the present study, we investigated the roles of CAG repeats and flanking cis elements and the associated proteins in controlling PPP2R2B expression. Deletion/site-directed mutagenesis, in silico searches and cDNA overexpression revealed that CREB1 and SP1 bind to the conserved sequence upstream the CAG repeats to up-regulate PPP2R2B expression, whereas TFAP4 binds to the conserved sequence downstream the CAG repeats to down-regulate PPP2R2B expression. The binding of CREB1, SP1, and TFAP4 to the PPP2R2B promoter was further confirmed by DNA pull-down and ChIP-PCR assays. CAG repeats itself also function as a cis element to up-regulate PPP2R2B expression as AT repeat length has no effect on PPP2R2B expression. Together, our data provide evidence that CREB1, SP1, and TFAP4 play roles in modulating PPP2R2B expression, thus offering a mechanism of regulating PP2A activity as the treatment of neurodegenerative diseases associated with abnormal PP2A activity.
Gram-negative bacteria utilize secretion systems to export substrates into their surrounding environment or directly into neighboring cells. These substrates are proteins that function to promote bacterial survival: by facilitating nutrient collection, disabling competitor species or, for pathogens, to disable host defenses. Following a rapid development of computational techniques, a growing number of substrates have been discovered and subsequently validated by wet lab experiments. To date, several online databases have been developed to catalogue these substrates but they have limited user options for in-depth analysis, and typically focus on a single type of secreted substrate. We therefore developed a universal platform, BastionHub, that incorporates extensive functional modules to facilitate substrate analysis and integrates the five major Gram-negative secreted substrate types (i.e. from types I–IV and VI secretion systems). To our knowledge, BastionHub is not only the most comprehensive online database available, it is also the first to incorporate substrates secreted by type I or type II secretion systems. By providing the most up-to-date details of secreted substrates and state-of-the-art prediction and visualized relationship analysis tools, BastionHub will be an important platform that can assist biologists in uncovering novel substrates and formulating new hypotheses. BastionHub is freely available at http://bastionhub.erc.monash.edu/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.