CdSe quantum dots have been encapped with aromatic ligands: a-toluenethiol, thiophenol, and p-hydroxythiophenol to enhance the photoluminescence (PL) quenching and photoelectric properties of the quantum dots. The aromatic ligand capped CdSe quantum dots are prepared through ligand exchange with trioctylphosphine oxide (TOPO) capped CdSe quantum dots. The XPS surface chemistry analysis and elemental analysis has confirmed the success of ligand exchange from TOPO to aromatic ligands. Both XRD and HRTEM-SAED studies indicate the crystalline structure of CdSe quantum dots not only remains but is also improved by the ligand exchange of TOPO with thiol molecules. Time resolved PL decay measurements indicate thiophenol and p-hydroxythiophenol ligands effectively quench the emission and have much shorter PL lifetimes than that of TOPO and that of a-toluenethiol. Thus, both thiophenol and p-hydroxythiophenol can act as an effective acceptor for photogenerated holes through aromatic p-electrons. Thiophenol also exhibits good charge transport behavior showing a 10-fold increase in short circuit current density (I sc ) as compared with TOPO in the photocurrent study of fabricated photovoltaic devices.
We have demonstrated an improvement of photovoltaic performance based on the nanostructured ZnO/poly(3-hexylthiophene) (P3HT) hybrid through interface molecular modification on ZnO nanorod surface. By probing the carrier dynamics at ZnO/P3HT interfaces, we have found that the interfacial molecules can play the role of assisting charge separation and suppression of back recombination at interfaces, which accounts for the observed enhanced short circuit current (Jsc) and open circuit voltage (Voc) in photovoltaic performance.
In this article, the polymer photovoltaic devices based on the poly(3-hexylthiophene)/TiO2 nanorods hybrid material is present. An enhancement in the device performance can be achieved by removing or replacing the insulating surfactant on the TiO2 nanorod surface with a more conductive ligand, which can play the role to assist charge separation efficiency or also to prevent from back recombination, giving a large improvement in the short circuit current and fill factor. The relatively high power conversion efficiency of 1.7% under simulated AM 1.5 illumination (100mW∕cm2) can be achieved, providing a route for fabricating low-cost, environmentally friendly polymer photovoltaic devices by all-solution processes.
This is a study of hybrid photovoltaic devices based on TiO 2 nanorods and poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV). We use TiO 2 nanorods as the electron acceptors and conduction pathways. Here we describe how to develop a large interconnecting network within the photovoltaic device fabricated by inserting a layer of TiO 2 nanorods between the MEH-PPV:TiO 2 nanorod hybrid active layer and the aluminium electrode. The formation of a large interconnecting network provides better connectivity to the electrode, leading to a 2.5-fold improvement in external quantum efficiency as compared to the reference device without the TiO 2 nanorod layer. A power conversion efficiency of 2.2% under illumination at 565 nm and a maximum external quantum efficiency of 24% at 430 nm are achieved. A power conversion efficiency of 0.49% is obtained under Air Mass 1.5 illumination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.