The presented work focuses on the experimental spray structure and the combustion of a linearly-arranged 5-swirler array. The aerodynamics and spray characteristics of a non-reacting single swirler are reported first as a baseline, followed by those of a 5-swirler array to investigate the effect of swirling flow interactions on aerodynamics and combustion. For the baseline single swirler, the smaller droplets follow the air flow more closely and further dispersed away at the exit of swirler. Thus, the mean diameter of droplet increases with the flow developing further downstream. However, in the central portion of a 5-swirler array, the droplet size remains similar. It is attributed to that swirling flow interactions might provide better air/fuel mixing and the additional shear stress to break up droplet continuously and is evident by the higher turbulent intensity in the aerodynamic measurement. Due to the influence of gas phase, the distribution of liquid phase in center toroidal recirculation zone (CTRZ) is non-uniform in a 5-swirler array. The center swirler of a 5-swirler array features a larger CTRZ which is accompanied by two smaller CTRZs from its neighbors. The flame anchored by the center swirler of a 5-swirler array is richer than the other two neighboring flames when the inter-swirler spacing is 2D, where D is the diameter of swirler exit diameter. However, when the inter-swirler spacing is increased to 2.5D, all swirlers feature a similar flame, which is different from what is expected from non-reacting flow studies reported previously. The unexpected result should be attributed to the difference in swirling strength between non-reacting and reacting flows. Moreover, the high speed imaging is employed to investigate the flame spreading during ignition process for a 5-swirler array. The high-speed movies show that the directional mechanism of flame spreading along lateral direction remains basically the same and is independent of the investigated test parameters including: two inter-swirler spacings, five fuel flow rates, five air pressure drops across swirlers, and five upstream air temperatures. An empirical correlation incorporating normalized inter-swirler spacing, air/fuel ratio, Reynolds number, and normalized air temperature is proposed and validated through a normalization procedure within around ± 10% error. The increase of Reynolds number and normalized air temperature has favorable impact on the flame spreading, which is stated by the empirical correlation.
Abstract:In this work, the fluid mechanics performance of four different contraction wall shapes has been studied and compared side-by-side by computational simulation, and the effect of contraction cross-sectional shape on the flow uniformity at the contraction exit has been included as well. A different contraction wall shape could result in up to an extra 4% pressure drop of a closed-loop wind tunnel, and the contraction wall shape has a stronger influence on the pressure loss than the contraction cross-sectional shape. The first and the second derivatives from different wall shape equations could provide a hint for qualitatively comparing the flow uniformity at the contraction exits. A wind tunnel contraction with an octagonal shape provides not only better fluid mechanics performance than that with a circular or a square cross-sectional shape, but also lower manufacturing costs. Moreover, a smaller blockage ratio within the test section can be achieved by employing an octagonal cross-sectional shape instead of a circular cross-sectional shape under the same hydraulic diameter circumstance. A wind tunnel contraction with an octagonal cross-sectional shape is recommended to be a design candidate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.