Abstract. Anthropogenic methane emissions originate from a large number of relatively small point sources. The planned GHGSat satellite fleet aims to quantify emissions from individual point sources by measuring methane column plumes over selected ∼10×10 km2 domains with ≤50×50 m2 pixel resolution and 1 %–5 % measurement precision. Here we develop algorithms for retrieving point source rates from such measurements. We simulate a large ensemble of instantaneous methane column plumes at 50×50 m2 pixel resolution for a range of atmospheric conditions using the Weather Research and Forecasting model (WRF) in large eddy simulation (LES) mode and adding instrument noise. We show that standard methods to infer source rates by Gaussian plume inversion or source pixel mass balance are prone to large errors because the turbulence cannot be properly parameterized on the small scale of instantaneous methane plumes. The integrated mass enhancement (IME) method, which relates total plume mass to source rate, and the cross-sectional flux method, which infers source rate from fluxes across plume transects, are better adapted to the problem. We show that the IME method with local measurements of the 10 m wind speed can infer source rates with an error of 0.07–0.17 t h-1+5 %–12 % depending on instrument precision (1 %–5 %). The cross-sectional flux method has slightly larger errors (0.07–0.26 t h-1+8 %–12 %) but a simpler physical basis. For comparison, point sources larger than 0.3 t h−1 contribute more than 75 % of methane emissions reported to the US Greenhouse Gas Reporting Program. Additional error applies if local wind speed measurements are not available and may dominate the overall error at low wind speeds. Low winds are beneficial for source detection but detrimental for source quantification.
A set of general circulation model experiments are conducted to analyze how the poleward energy transport (PET) is related to the spatial pattern of CO2 radiative forcing. The effects of forcing pattern are affirmed by comparing the conventional doubling CO2 experiment, in which the forcing pattern is inhomogeneous, to a set of forcing homogenization experiments, in which the top of atmosphere (TOA), surface, or atmospheric forcing distribution is homogenized respectively. In addition, we separate and compare the effects of CO2 forcing to various feedbacks on atmospheric and oceanic PETs, by using a set of radiative kernels that we have developed for both TOA and surface radiation fluxes. The results here show that both the enhancement of atmospheric PET and weakening of oceanic PET during global warming are directly driven by the meridional gradients of the CO2 forcing. Interestingly, the overall feedback effect is to reinforce the forcing effect, mainly through the cloud feedback in the case of atmospheric PET and the albedo feedback in the case of the oceanic PET. Contrary to previous studies, we find that the water vapor feedback only has a weak effect on atmospheric PET. The Arctic warming amplification, which strongly affects atmospheric PET, is sensitive to the CO2 forcing pattern.
Human adults from diverse cultures share intuitions about the points, lines, and figures of Euclidean geometry. Do children develop these intuitions by drawing on phylogenetically ancient and developmentally precocious geometric representations that guide their navigation and their analysis of object shape? In what way might these early-arising representations support laterdeveloping Euclidean intuitions? To approach these questions, we investigated the relations among young children's use of geometry in tasks assessing: navigation; visual form analysis; and the interpretation of symbolic, purely geometric maps. Children's navigation depended on the distance and directional relations of the surface layout and predicted their use of a symbolic map with targets designated by surface distances. In contrast, children's analysis of visual forms depended on the size-invariant shape relations of objects and predicted their use of the same map but with targets designated by corner angles. Even though the two map tasks used identical instructions and map displays, children's performance on these tasks showed no evidence of integrated representations of distance and angle. Instead, young children flexibly recruited geometric representations of either navigable layouts or objects to interpret the same spatial symbols. These findings reveal a link between the early-arising geometric representations that humans share with diverse animals and the flexible geometric intuitions that give rise to human knowledge at its highest reaches. Although young children do not appear to integrate core geometric representations, children's use of the abstract geometry in spatial symbols such as maps may provide the earliest clues to the later construction of Euclidean geometry.spatial cognition | mathematical cognition | map reading A bstract concepts of formal geometry underlie a wide range of human achievements, but their source has been debated for millennia (1). Human abilities to navigate the environment and to recognize objects develop early and are shared across diverse animal species. In recent years, intensive study at levels from neurons to cognition (2-5) has illuminated the geometric information guiding these abilities in animals from insects to vertebrates (6-8) and in humans from infants to adults (9-14). When navigating, humans and animals represent their position by encoding the distances and directions of extended surfaces in the terrain rather than the angles at which surfaces meet (15, 16). In contrast, humans and animals represent objects by encoding the angles and relative lengths defining 3D part structures or 2D shapes rather than their absolute sizes or the directional relations that distinguish a form from its mirror image (17, 18). Despite the pervasiveness and power of these core geometric representations, neither in isolation is adequate to support abstract geometric intuitions, which require an integrated representation of distance and angle (13,19,20). Still, these two sets of core representations together may ...
International trade separates regions consuming goods and services from regions where goods and related aerosol pollution are produced. Yet the role of trade in aerosol climate forcing attributed to different regions has never been quantified. Here, we contrast the direct radiative forcing of aerosols related to regions’ consumption of goods and services against the forcing due to emissions produced in each region. Aerosols assessed include black carbon, primary organic aerosol, and secondary inorganic aerosols, including sulfate, nitrate and ammonium. We find that global aerosol radiative forcing due to emissions produced in East Asia is much stronger than the forcing related to goods and services ultimately consumed in that region because of its large net export of emissions-intensive goods. The opposite is true for net importers such as Western Europe and North America: global radiative forcing related to consumption is much greater than the forcing due to emissions produced in these regions. Overall, trade is associated with a shift of radiative forcing from net importing to net exporting regions. Compared to greenhouse gases such as carbon dioxide, the short atmospheric lifetimes of aerosols cause large localized differences between consumption- and production-related radiative forcing. International efforts to reduce emissions in the exporting countries will help alleviate trade-related climate and health impacts of aerosols while lowering global emissions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.