Background:Key challenges of biopsy-based determination of prostate cancer aggressiveness include tumour heterogeneity, biopsy-sampling error, and variations in biopsy interpretation. The resulting uncertainty in risk assessment leads to significant overtreatment, with associated costs and morbidity. We developed a performance-based strategy to identify protein biomarkers predictive of prostate cancer aggressiveness and lethality regardless of biopsy-sampling variation.Methods:Prostatectomy samples from a large patient cohort with long follow-up were blindly assessed by expert pathologists who identified the tissue regions with the highest and lowest Gleason grade from each patient. To simulate biopsy-sampling error, a core from a high- and a low-Gleason area from each patient sample was used to generate a ‘high' and a ‘low' tumour microarray, respectively.Results:Using a quantitative proteomics approach, we identified from 160 candidates 12 biomarkers that predicted prostate cancer aggressiveness (surgical Gleason and TNM stage) and lethal outcome robustly in both high- and low-Gleason areas. Conversely, a previously reported lethal outcome-predictive marker signature for prostatectomy tissue was unable to perform under circumstances of maximal sampling error.Conclusions:Our results have important implications for cancer biomarker discovery in general and development of a sampling error-resistant clinical biopsy test for prediction of prostate cancer aggressiveness.
BackgroundWe have witnessed significant progress in gene-based approaches to cancer prognostication, promising early intervention for high-risk patients and avoidance of overtreatment for low-risk patients. However, there has been less advancement in protein-based approaches, even though perturbed protein levels and post-translational modifications are more directly linked with phenotype. Most current, gene expression-based platforms require tissue lysis resulting in loss of structural and molecular information, and hence are blind to tumor heterogeneity and morphological features.ResultsHere we report an automated, integrated multiplex immunofluorescence in situ imaging approach that quantitatively measures protein biomarker levels and activity states in defined intact tissue regions where the biomarkers of interest exert their phenotype. Using this approach, we confirm that four previously reported prognostic markers, PTEN, SMAD4, CCND1 and SPP1, can predict lethal outcome of human prostate cancer. Furthermore, we show that two PI3K pathway-regulated protein activities, pS6 (RPS6-phosphoserines 235/236) and pPRAS40 (AKT1S1-phosphothreonine 246), correlate with prostate cancer lethal outcome as well (individual marker hazard ratios of 2.04 and 2.03, respectively). Finally, we incorporate these 2 markers into a novel 5-marker protein signature, SMAD4, CCND1, SPP1, pS6, and pPRAS40, which is highly predictive for prostate cancer-specific death. The ability to substitute PTEN with phospho-markers demonstrates the potential of quantitative protein activity state measurements on intact tissue.ConclusionsIn summary, our approach can reproducibly and simultaneously quantify and assess multiple protein levels and functional activities on intact tissue specimens. We believe it is broadly applicable to not only cancer but other diseases, and propose that it should be well suited for prognostication at early stages of pathogenesis where key signaling protein levels and activities are perturbed.
Glioblastoma (GBM), an aggressive primary tumor, is common in humans, accounting for 12–15% of all intracranial tumors, and has median survival of fewer than 15 months. Since a growing body of evidence suggests that conventional drugs are ineffective against GBM, our goal is to find emerging therapies that play a role in its treatment. This research constructs a risk model to predict the prognosis of GBM patients. A set of genes associated with GBM was taken from a GBM gene data bank, and clinical information on patients with GBM was retrieved from the Cancer Genome Atlas (TCGA) data bank. One-way Cox and Kaplan–Meier analyses were performed to identify genes in relation to prognosis. Groups were classified into high and low expression level of PTEN expression. Prognosis-related genes were further identified, and multi-factor Cox regression analysis was used to build risk score equations for the prognostic model to construct a survival prognostic model. The area under the ROC curve suggested that the pattern had high accuracy. When combined with nomogram analysis, GJB2 was considered an independent predictor of GBM prognosis. This study provides a potential prognostic predictive biological marker for GBM patients and confirms that GJB2 is a key gene for GBM progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.