Growth inhibition and apoptotic/necrotic phenotype was observed in nanogold particle (AuNP)-treated human chronic myelogenous leukemia cells. To elucidate the underlying cellular mechanisms, proteomic techniques including two-dimensional electrophoresis/mass spectrometry and protein microarrays were utilized to study the differentially expressed proteome and phosphoproteome, respectively. Systems biology analysis of the proteomic data revealed that unfolded protein-associated endoplasmic reticulum (ER) stress response was the predominant event. Concomitant with transcriptomic analysis using mRNA expression, microarrays show ER stress response in the AuNP-treated cells. The ER stress protein markers' expression assay unveiled AuNPs as an efficient cellular ER stress elicitor. Upon ER stress, cellular responses, including reactive oxygen species increase, mitochondrial cytochrome c release, and mitochondria damage, chronologically occurred in the AuNP-treated cells. Conclusively, this study demonstrates that AuNPs cause cell death through induction of unmanageable ER stress.
The BK virus (BKV) is an emerging pathogen in immunocompromised individuals and widespread in the human population. Polymerase chain reaction is a simple and highly sensitive method for detecting BKV, but it is time consuming and requires expensive instruments and expert judgment. The lateral flow assay, a rapid, low-cost, minimal-labor, and easy-to-use diagnostic method, was successfully applied for pathogen detection. In this study, we used oligonucleotide probes to develop a simple and rapid sandwich-type lateral flow immunoassay for detecting BKV DNA within 45 minutes. The detection limit for the synthetic single-stranded DNA was 5 nM. The specificity study showed no cross-reactivity with other polyomaviruses, such as JC virus and simian virus 40. For the Escherichia coli containing BKV plasmid cultured samples, the sensitivity was determined to be 107 copies/mL. The approach offers great potential for BKV detection of various target analytes in point-of-care settings.
Repair and regeneration of craniofacial tissues is particularly challenging because they comprise a complex structure of hard and soft tissues involved in intricate functions. This study combined collagen scaffolds and human adipose stem cells (hASCs) for oral mucosal and calvarial bone regeneration by using resveratrol (RSV), which affects the differentiation of mesenchymal stem cells. We have evaluated the effect of collagen scaffold-containing RSV (collagen/RSV) scaffolds both in vitro and in vivo for their wound healing and bone regeneration potential. Scanning electron microscopy and immunostaining results reveal that hASCs adhere well to and proliferate on both collagen scaffolds and collagen/RSV scaffolds. Oral mucosal lesion experiments demonstrated that the collagen/RSV scaffold is more effective in wound closure and contraction than the collagen scaffold. The micro-computed tomography (μCT) images of calvarial bone display regenerating bone in defects covered with hASCs on collagen/RSV scaffolds that are more visible than that in defects covered with hASCs on a collagen scaffolds. RSV was more effective at inducing hASC differentiation on the collagen scaffold, suggesting that collagen/RSV scaffolds can provide useful biological cues that stimulate craniofacial tissue formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.