In this study, different types of food wastes were used as the major source of protein to replace the fish meal in fish feeds to produce quality fish (polyculture of different freshwater fish). During October 2011-April 2012, the concentrations of Hg in water, suspended particulate matter, and sediment of the three experimental fish ponds located in Sha Tau Kok Organic Farm were monitored, and the results were similar to or lower than those detected in commercial fish ponds around the Pearl River Delta (PRD) region (by comparing data of previous and present studies). Health risk assessments indicated that human consumption of grass carp (Ctenopharyngodon idellus), a herbivore which fed food waste feed pellets would be safer than other fish species: mud carp (Cirrhina molitorella), bighead carp (Hypophthalmichthys nobilis), and largemouth bass (Lepomis macrochirus). Due to the lower species diversity and substantially shorter food chains of the polyculture system consisting of only three fish species, the extent of Hg biomagnification was significantly lower than other polyculture ponds around PRD. Furthermore, the use of food waste instead of fish meal (mainly consisted of contaminated trash fish) further reduced the mercury accumulation in the cultured fish.
A new organically templated gallium oxalatophosphate, (C7H20N2)0.5[Ga3(C2O4)0.5(PO4)3], has been synthesized by using a low-melting-point eutectic mixture of choline chloride and oxalic acid as a solvent and characterized by single-crystal X-ray diffraction, thermogravimetric analysis and solid-state NMR spectroscopy. It is the first example of ionothermal synthesis of organically templated metal oxalatophosphate. The structure contains double 6-ring units of the composition Ga6(PO4)6 which are connected by oxalate ligands and P-O-Ga bonds to form a 3-D framework. The charge-compensating organic ammonium cations which are disordered over two positions are located at the intersections of two types of 8-ring channels. 1H MAS and 13C CPMAS NMR studies confirm the presence of N,N,N',N'-tetramethyl-1,3-propanediammonium cation. The 71Ga and 31P MAS NMR spectra are also consistent with the crystal structure analysis results.
A detection method for organophosphorus pesticides using electrochemical sensor based on enzyme inhibition has been developed. Acetylcholine esterase (AChE) was selected to quantify the pesticides concentration in water samples due to its activity was non-competitively inhibited in the presence of pesticides. To detect parathion and dichlorvos, optimized analytical conditions were that the substrate concentration was 3mmol/L, enzyme solution concentration was 18g/L and reaction time was 20min. Under the optimized detection conditons, a detection limit of 1.2ng/mL and 0.004ng/mL for parathion and dichlorvos was obtained, respectively. The approach was rapid, simple, accurate and of high sensitivity when compared with immunoassays or chromatographic methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.