The combination of rigid acridine donor and 1,8-naphthalimide acceptor has afforded two orange-red emitters of NAI-DMAC and NAI-DPAC with high rigidity in molecular structure and strongly pretwisted charge transfer state. Endowed with high photoluminescence quantum yields (Φ ), distinct thermally activated delayed fluorescence (TADF) characteristics, and preferentially horizontal emitting dipole orientations, these emitters afford record-high orange-red TADF organic light-emitting diodes (OLEDs) with external quantum efficiencies of up to 21-29.2%, significantly surpassing all previously reported orange-to-red TADF OLEDs. Notably, the influence of microcavity effect is verified to support the record-high efficiency. This finding relaxes the usually stringent material requirements for effective TADF emitters by comprising smaller radiative transition rates and less than ideal Φ s.
A series of twisted D–π–A type emitters based on the acridine donor unit and CN‐substituted pyridine, pyrimidine, and benzene acceptor units are studied. They not only allow one to systematically probe the influence of different acceptor strengths, but also permit one to intriguingly probe the influence of tunable conformations (twist angles) within the acceptor moieties through controlling the orientation of asymmetric heteroaromatic ring relative to the donor component. Intramolecular charge‐transfer transitions are observed in all these compounds and emission wavelengths are widely tunable from deep blue to yellow not only by the general acceptor strength due to the characters of heteroarene and CN‐substitution pattern but also by the subtle control of in‐acceptor conformation (twist angles). Small triplet‐to‐singlet energy gaps (ΔEST) and significant thermally activated delayed fluorescence (TADF) characteristics are obtained in a series of D–π–A compounds with sufficient acceptor strengths and tunable in‐acceptor conformation, yielding a series of efficient blue‐green to yellow TADF emitters with promisingly high photoluminescence quantum yields of 90%–100%. Highly efficient blue‐green to yellow TADF organic light‐emitting diodes (OLEDs) having external quantum efficiencies of up to 23.1%–31.3% are achieved using these efficient TADF emitters, which are among the most efficient TADF OLEDs ever reported.
The electron positive boron atom usually does not contribute to the frontier orbitals for several lower-lying electronic transitions, and thus is ideal to serve as a hub for the spiro linker of light-emitting molecules, such that the electron donor (HOMO) and acceptor (LUMO) moieties can be spatially separated with orthogonal orientation. On this basis, we prepared a series of novel boron complexes bearing electron deficient pyridyl pyrrolide and electron donating phenylcarbazolyl fragments or triphenylamine. The new boron complexes show strong solvent-polarity dependent charge-transfer emission accompanied by a small, non-negligible normal emission. The slim orbital overlap between HOMO and LUMO and hence the lack of electron correlation lead to a significant reduction of the energy gap between the lowest lying singlet and triplet excited states (ΔET-S ) and thereby the generation of thermally activated delay fluorescence (TADF).
A new series of functional phenylpyridinato boron complexes possessing thermally activated delayed fluorescence (TADF) has been strategically designed and synthesized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.