Due to overcoming the limitation of aggregation caused quenching (ACQ) on solid-state emitter, aggregation-induced emission (AIE) organic luminogens have becoming a promising candidate in aqueous electrochemiluminescence (ECL). However, restricted by...
Nanoencapsulation strategy is introduced onto a state-of-the-art thermally activated delayed fluorescence (TADF) molecule, i.e. 4CzIPN, which ensures the achievement of air-stable, water-soluble TADF nanoparticles featuring efficient TADF property without unsatisfactory...
Electrochemiluminescence (ECL) based on conjugated polymers or oligomers is persistently being pursued owing to its huge application scope ranging from ultra-sensitive bioanalysis to ultra-resolution imaging and spectroscopy. Because of the theoretical limit in radiative exciton generation yield (typicallỹ 25 %) of those polymers or oligomers, the corresponding ECL efficiency is still limited, which hampers its ECL performance and its related applications. Herein, we report ECL based on a thermally activated delayed fluorescence (TADF) polymer scaffold, which is characteristic of all-exciton harvesting in the ECL process, and thus potentially capable of achieving~100 % ECL efficiency. These desired properties of the TADF polymer ECL is attributed to a fast and efficient up-conversion process from non-radiative triplet to radiative singlet states under thermal activation, which is absent in conventional fluorescent polymers/oligomers, such as F8BT. In this study, various ECL modes, including annihilation or co-reactant mode using TPrA or S 2 O 8 2À as co-reactant, are confirmed for our model TADF polymer ECL system, which was different from fluorescent polymer ECL counterpart. Furthermore, solid-state ECL sensing on L-cysteine (an important marker of disease) is also evaluated by using the model TADF polymer. Ultralow detection limit in combination with high sensitivity and good specificity are achieved for this model system, indicative of a high potential of the TADF polymer scaffold for applications in the broad field of ECL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.