It is unclear how CD4 T cell memory formation is regulated following pathogen challenge, and when critical mechanisms act to determine effector T cell fate. Here, we report that following influenza infection most effectors require signals from major histocompatibility complex class II molecules and CD70 during a late window well after initial priming to become memory. During this timeframe, effector cells must produce IL-2 or be exposed to high levels of paracrine or exogenously added IL-2 to survive an otherwise rapid default contraction phase. Late IL-2 promotes survival through acute down regulation of apoptotic pathways in effector T cells and by permanently upregulating their IL-7 receptor expression, enabling IL-7 to sustain them as memory T cells. This new paradigm defines a late checkpoint during the effector phase at which cognate interactions direct CD4 T cell memory generation.
Inflammation induced by recognition of pathogen-associated molecular patterns dramatically impacts subsequent adaptive responses. We asked if the adaptive immune system can also affect the character and magnitude of innate inflammatory responses. We find that the response of memory, but not naïve, CD4+ T cells enhances production of multiple innate inflammatory cytokines and chemokines (IIC) in the lung, and that during influenza infection, this leads to early control of virus. Memory CD4+ T cell induced IIC and viral control require cognate antigen recognition and are optimal when memory cells are either T helper type 1 (TH1)- or TH17-polarized, but are independent of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production and do not require activation of conserved pathogen recognition pathways. This represents a novel mechanism by which memory CD4+ T cells induce an early innate response that enhances immune protection against pathogens.
Whether differences between naive cell-derived primary (1°) and memory cell-derived secondary (2°) CD4+ T-cell effectors contribute to protective recall responses is unclear. Here, we compare these effectors directly after influenza A virus infection. Both develop with similar kinetics, but 2° effectors accumulate in greater number in the infected lung and are the critical component of memory CD4+ T-cell–mediated protection against influenza A virus, independent of earlier-acting memory-cell helper functions. Phenotypic, functional, and transcriptome analyses indicate that 2° effectors share organ-specific expression patterns with 1° effectors but are more multifunctional, with more multicytokine (IFN-γ+/IL-2+/TNF+)-producing cells and contain follicular helper T-cell populations not only in the spleen and draining lymph nodes but also in the lung. In addition, they express more CD127 and NKG2A but less ICOS and Lag-3 than 1° effectors and express higher levels of several genes associated with survival and migration. Targeting two differentially expressed molecules, NKG2A and Lag-3, reveals differential regulation of 1° and 2° effector functions during pathogen challenge.
While memory CD4 T cells are critical for effective immunity to pathogens, the mechanisms underlying their generation are still poorly defined. We find that following murine influenza infection, most effector CD4 T cells undergo apoptosis unless they encounter cognate Ag at a defined stage near the peak of effector generation. Ag recognition at this “memory checkpoint” blocks default apoptosis and programs their transition to long-lived memory. Strikingly, we find that viral infection is not required, as memory formation can be restored by the addition of short-lived, Ag-pulsed APC at this checkpoint. The resulting memory CD4 T cells express an enhanced memory phenotype, have increased cytokine production, and provide protection against lethal influenza infection. Finally, we find that memory CD4 T cell formation following cold-adapted influenza vaccination is boosted when Ag is administered during this checkpoint. These findings imply that persistence of viral Ag presentation into the effector phase is the key factor that determines the efficiency of memory generation. We also suggest that administering Ag at this checkpoint may improve vaccine efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.