Background: Although aminoglycosides are often used as treatment for Gram-negative infections, optimal dosing regimens remain unclear, especially in ICU patients. This is due to a large between- and within-subject variability in the aminoglycoside pharmacokinetics in this population. Objective: This review provides comprehensive data on the pharmacokinetics of aminoglycosides in patients hospitalized in the ICU by summarizing all published PopPK models in ICU patients for amikacin, gentamicin, and tobramycin. The objective was to determine the presence of a consensus on the structural model used, significant covariates included, and therapeutic targets considered during dosing regimen simulations. Method: A literature search was conducted in the Medline/PubMed database, using the terms: ‘amikacin’, ’gentamicin’, ’tobramycin’, ‘pharmacokinetic(s)’, ’nonlinear mixed effect’, ’population’, ‘intensive care’, and ‘critically ill’. Results: Nineteen articles were retained where amikacin, gentamicin, and tobramycin pharmacokinetics were described in six, 11, and five models, respectively. A two-compartment model was used to describe amikacin and tobramycin pharmacokinetics, whereas a one-compartment model majorly described gentamicin pharmacokinetics. The most recurrent significant covariates were renal clearance and bodyweight. Across all aminoglycosides, mean interindividual variability in clearance and volume of distribution were 41.6% and 22.0%, respectively. A common consensus for an optimal dosing regimen for each aminoglycoside was not reached. Conclusions: This review showed models developed for amikacin, from 2015 until now, and for gentamicin and tobramycin from the past decades. Despite the growing challenges of external evaluation, the latter should be more considered during model development. Further research including new covariates, additional simulated dosing regimens, and external validation should be considered to better understand aminoglycoside pharmacokinetics in ICU patients.
Background Although aminoglycosides are often used as treatment for Gram-Negative infections, optimal dosing regimens remains unclear, especially in ICU patients. This is due to a large between- and within-subject variability in the aminoglycosides’ pharmacokinetics in this population. Objective The review provides comprehensive data on the pharmacokinetics of aminoglycosides in patients hospitalized in ICU by summarizing all published PopPK models in ICU patients for amikacin, gentamicin, and tobramycin. The objective was to determine the presence of a consensus on the structural model used, significant covariates included, and therapeutic targets considered during dosing regimen simulations. Methods A literature search was conducted from the Medline/PubMed database, using the terms: ‘amikacin’, ’gentamicin’, ’tobramycin’, ‘pharmacokinetic(s)’, nonlinear mixed effect’, population’, ‘intensive care’ and ‘critically ill’. Results Nineteen articles were retained where amikacin, gentamicin and tobramycin pharmacokinetics were described in six, eleven and five models, respectively. Two-compartment model best described amikacin and tobramycin pharmacokinetics, whereas one-compartment model majorly described gentamicin pharmacokinetics. The most recurrent significant covariates were renal clearance and bodyweight. Across all aminoglycosides, mean interindividual variability in clearance and volume of distribution were 41.6% and 22.0%, respectively. A common consensus for an optimal dosing regimen for each aminoglycoside was not reached. Conclusion This review showed models developed for amikacin, from 2015 until now and for gentamicin and tobramycin from the past decades. Despite growing challenges of external evaluation, the latter should be more considered during model development. Further research including new covariates, additional simulated dosing regimens and external validation should be considered to better understand aminoglycosides pharmacokinetics in ICU patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.