Compressed air energy storage (CAES) is a grid-scale energy storage technology for intermittent energy, as proven by the decades-long successful operation of two existing compressed air energy storage in cavern (CAESC) power plants. Because of the limited availability of salt domes appropriate for CAESC, the more widely available aquifers (compressed air energy storage in aquifers, CAESA) have recently attracted considerable attention as candidates for CAES. An ideal aquifer for CAESA is highly permeable around the well to facilitate easy injection and withdrawal of air, but the highpermeability region is surrounded by low-permeability zones to minimize the loss of injected air and decrease in energy efficiency. However, such ideal geological structures are not always available in nature. Therefore, the potential of creating man-made low-permeability barrier in high-permeability aquifers is very interesting. In this paper, we investigate the feasibility of man-made low-permeability barriers in high-permeability aquifers using the numerical simulator TOUGH2/Gel to calculate the three-component flow (including a miscible gelling liquid). The simulation results show that an expected low-permeability barrier can be created by injecting grout with certain properties, and the altered aquifer performs well for CAESA. Additional sensitivity studies are also performed to reveal the effects of the various factors on the success of the low-permeability barrier creation, including the critical solidification concentration, the scale factor of the time dependence of the grout viscosity, the relative density of the grout, and the volume of the follow-up water injection. The results indicate that, in a horizontal aquifer, low critical solidification concentrations, and small scale factors are generally preferred and the density of grout should be close to that of the in situ water. For the given volume of the injected grout, there is an optimal follow-up water injection that will create the largest storage space without damaging the barrier. These results may help to extend the candidate sites for CAESA and the prospect of large scale energy storage.
On-road exhaust emissions from light-duty vehicles are greatly influenced by driving conditions. In this study, two light-duty passenger cars (LDPCs) and three light-duty diesel trucks (LDDTs) were tested to investigate the on-road emission factors (EFs) with a portable emission measurement system. Emission characteristics of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOx) emitted from vehicles at different speeds, accelerations and vehicle specific power (VSP) were analyzed. The results demonstrated that road conditions have significant impacts on regulated gaseous emissions. CO, NOx, and HC emissions from light-duty vehicles on urban roads increased by 1.1–1.5, 1.2–1.4, and 1.9–2.6 times compared with those on suburban and highway roads, respectively. There was a rough positive relationship between transient CO, NOx, and HC emission rates and vehicle speeds, while the EFs decreased significantly with the speed decrease when speed ≤ 20 km/h. The emissions rates of NOx and HC tended to increase and then decrease as the acceleration increased and the peak occurred at 0 m/s2 without considering idling conditions. For HC and CO, the emission rates were low and changed gently with VSP when VSP < 0, while emission rates increased gradually with the VSP increase when VSP > 0. For NOx NOx emission rates were lower and had no obvious change when VSP < 0. However, NOx emissions were positively correlated with VSP, when VSP > 0.
In the process of hydraulic lifting of solid mineral particles on the seabed, the two-phase flow in the pipeline causes wall wear, which reduces the reliability of the hydraulic lifting system. In this research, based on the coupled computational fluid dynamics (CFD) and discrete element method (DEM), the numerical simulation of large particle solid–liquid two-phase flow and wall wear in a bend pipe with different wall shapes was conducted to provide solutions for reducing wall wear. By adding bumps to the bend pipe wall to change the shape of its inner wall, under the working conditions of particle concentrations of 1–10% and particle sizes of 1–3 mm, wear experiments and calculations for the bend pipe with bumps at different positions were performed. With comparative analysis, it was found that the location of the bump in the bend pipe had an important influence on the maximum wear rate. When the bump was located near the location where the particles collided with the prototype bend pipe for the first time, the maximum wear rate decreased the most significantly. The particle mass flow rate will also affect the wear reduction effect of the bump on the bend pipe wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.