Notch is a pleiotropic signaling family that has been implicated in pathogenesis of allergic airway diseases; however, the distinct function of individual Notch ligands remains elusive. We investigated whether Notch ligands, Jagged1 and DLL4, exert differential effects in OVA-induced allergic asthma. We found that whilst Jagged1 inhibition mitigated Th2-dominated airway inflammation, blockage of DLL4 aggravated the Th2-mediated asthma phenotypes. Additionally, Jagged1 signaling blockage enhanced IL-17 production and neutrophilic airway infiltration. In vitro, exogenous Jagged1 induced Th2-skewed responses, whereas augmented DLL4 signaling displayed a dual role by promoting expansion of both Tregs and Th17. In vivo, DLL4 blockage impaired Treg differentiation which plausibly resulted in exaggerated asthma phenotypes. On the contrary, administration of DLL4-expressing antigen-presenting cells promoted endogenous Treg expansion and ameliorated the allergic responses. Therefore, whilst Jagged1 induces Th2-skewed inflammation, DLL4 elicits an essential self-regulatory mechanism via Treg-mediated pathway that counterbalances Jagged1-induced Th2 responses and facilitates resolution of the airway inflammation to restore homeostasis. These findings uncover a disparate function of Jagged1 and DLL4 in allergic airway diseases, hinting feasibility of Notch ligand-specific targeting in therapy of allergic airway diseases.
Airway hyperresponsiveness is the hallmark of allergic asthma and caused by multiple factors. Nerve growth factor (NGF), a neurotrophin, is originally known for regulation of neural circuit development and function. Recent studies indicated that NGF contributes to airway hyperresponsiveness and pathogenesis of asthma. The objective of this study is to develop a small interfering RNA against NGF to attenuate airway hyperresponsiveness and further elucidate the underlying mechanism. In a murine model of allergic asthma, the ovalbumin-sensitized mice were intratracheally delivered small interfering RNA against NGF or administered an inhibitor targeting NGF receptor, tropomyosin-related kinase A, as a positive treatment control. In this study, knockdown NGF derived from pulmonary epithelium significantly reduced airway resistance in vivo. The levels of NGF, proinflammatory cytokines and infiltrated eosinophils in airway were decreased in small interfering RNA against NGF group but not in tropomyosin-related kinase A inhibitor and mock siRNA group. Furthermore, induction of neuropeptide (substance P) and airway innervation were mediated by NGF/tropomyosin-related kinase A pathway. These findings suggested that NGF targeting treatment holds the potential therapy for antigen-induced airway hyperresponsiveness via attenuation of airway innervation and inflammation in asthma.
Airway epithelium defends the invasion from microorganisms and regulates immune responses in allergic asthma. Thymic stromal lymphopoietin (TSLP) from inflamed epithelium promotes maturation of dendritic cells (DCs) to prime Th2 responses via CCL17, which induces chemotaxis of CD4+ T cells to mediate inflammation. However, few studies have investigated the regulation of epithelial CCL17. In this study, we used shRNA against TSLP to clarify the role of TSLP in the airway inflammation and whether TSLP affects the airway inflammation via epithelial CCL17. Specific shTSLP was delivered by lentivirus and selected by the knockdown efficiency. Allergic mice were intratracheally pretreated with the lentivirus and followed by intranasal ovalbumin (OVA) challenges. The sera antibody levels, airway inflammation, airway hyper-responsiveness (AHR), cytokine levels in bronchoalveolar lavage fluids, and CCL17 expressions in lungs were determined. In vivo, TSLP attenuation reduced the AHR, decreased the airway inflammation, inhibited the maturations of DCs, and suppressed the migration of T cells. Furthermore, the expression of CCL17 was particularly decreased in bronchial epithelium. In vitro, CCL17 induction was regulated by TSLP. In conclusion, TSLP might coordinate airway inflammation partially via CCL17-mediated responses and this study provides the vital utility of TSLP to develop the therapeutic approach in allergic airway inflammation.
Notch is a pleiotropic signaling family that has been implicated in pathogenesis of allergic airway diseases; however, the distinct function of individual Notch ligands remains elusive. By using an OVA-induced murine asthma model, we investigated whether Notch ligands, Jagged1 and DLL4, exert differential effects during allergic airway inflammation. We found that whilst Jagged1 inhibition mitigated Th2-dominated airway inflammation, blockage of DLL4 aggravated the Th2-mediated asthma phenotypes. Additionally, blockage of Jagged1 signaling enhanced IL-17 production and neutrophilic airway infiltration. In vitro, exogenous Jagged1 induced Th2-skewed responses, whereas augmented DLL4 signaling displayed a dual role by promoting expansion of both Tregs and Th17. In vivo, DLL4 blockage impaired Treg differentiation which plausibly resulted in exaggerated asthma phenotypes. On the contrary, administration of DLL4-expressing antigen-presenting cells promoted endogenous Treg expansion and ameliorated the allergic responses. Therefore, whilst Jagged1 induces Th2-skewed inflammation, DLL4 elicits an essential self-regulatory mechanism via Treg-mediated pathway that overcomes Jagged1-induced Th2 responses and facilitates resolution of the airway inflammation. These findings uncover a disparate function of Jagged1 and DLL4 in allergic airway diseases, suggesting the feasibility of Notch ligand-specific targeting in therapy of allergic airway diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.